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ON THE  STRUCTURE  OF  SEMIPRIME  RINGS

AUGUSTO  H.   ORTIZ

Abstract. The structure of prime rings has recently been

studied by A. W. Goldie, R. E. Johnson, L. Lesieur and R. Croisot.

In their main results some sort of finiteness assumption is invariably

made. It is shown in this paper that certain semiprime rings are

subdirect sums of full rings of linear transformations of a right

vector space over a division ring. No finiteness assumption is made

about the ring. An apparently new radical property is defined and

some of its properties are established; e.g., the radical of a matrix

ring Rn is the matrix ring of the radical of R.

1. Introduction. Our results were motivated by the following character-

ization of primitive ideals in terms of prime ideals. Throughout, if M is

an 7?-module and N is a submodule of M, (0:M)={a e R\Ma=0} and

(N:M) = {aeR\Ma^N}.

Theorem 1.1. A prime ideal P of a ring R is primitive if and only if

there exists an R-module M such that (0: M)=P which satisfies the following

two conditions:

(1) If N is a submodule of M such that (0:N) = (0:M), then N=M.

(2) If N is a submodule of M such that {N:M) = {0:M), then N=0.

The sufficiency of the conditions is easy to establish since (N:M)(0:N) <=

(0:M) and (0:M) is a prime ideal of R. Whence, using (1) and (2), N=0

or N=M. The necessity is more evident. There are trivial examples of

modules which satisfy (1) and (2) but which are not irreducible. Also

there are examples of Ä-modules M such that (0:M) is a prime ideal of R

but M does not satisfy condition (2). This theorem suggests conditions

which may be imposed on a prime ring to obtain information about its

structure. In effect, we prove in Theorem 3.3 that if R is a prime ring for

which there is a module M such that (0:M)=0 and satisfying condition
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(2) above, then R may be embedded in a full ring of linear transformations

of a right vector space over a division ring.

2. Radical property K. Let KB denote the class of all R-modules M

such that (0:M) is a prime ideal of R and whose only submodule N for

which (N:M)=(0:M) is N=0. We say that KB is faithful if

C]{(0:M)\MeKB} = 0.

Theorem 2.1.    The property KB= 0 is a radical property of R.

Proof. It suffices to show [1] that for every R-module M and every

homomorphism h of R the following two conditions are satisfied:

(1) M e Km if and only if M g Kb and Ker h<=(0:M).

(2) KB is faithful if and only if for every ideal 7^0 of R, Kr^ 0.

It is easy to check property (1). To see that (2) holds, suppose that K

is faithful and that 7^0 is an ideal of R. Then there exists Me KB such

that MI^O. Whence (0:M)/= (0:M)BrM is a prime ideal of I. Further-

more if N is an 7-submodule of M such that (N:M)I=(0:M)I, then

Nc{xeM\xI<=N} = N', an R-submodule of M. Also (N':M)B=

(0:M)B, so that N'=0 and N=0. Therefore M e K¡.

Conversely, if for every ideal 7#0 of R, K¡j£ 0, and if

J= f\{(0:M)\MeKR} ?i0,

then Kjí¿ 0. If M e KJt it is not hard to show that MJ e KB. But J<t

(0:MJ)B and this is a contradiction. Therefore J must be 0 and the proof

is complete.

We shall denote by K the radical property defined by the classes KB.

It is easy to show that, for each ring R, K(R)=f) {(0:M)\M e KB}. In

view of Theorem 1.1, K contains the prime radical P and is contained in

the Jacobson radical /. We shall give examples which show that K^J,

but we do not know yet that K^P.

It follows from the last paragraph of the preceding theorem that

KRjt 0 when K¡j£0, where /is an ideal of R. Therefore K is hereditary.

The fact that the ring of integers is A^-semisimple implies [4, Theorem 2,

p. 11] that K(R1)=K(R), where R1 denotes the ring with identity in which

R is usually embedded as an ideal. This fact simplifies the proof of the

next theorem. In what follows Rn denotes the ring of « x « matrices over R.

We will say that an ideal P of R is K-primitive if P=(0:M) for some

M e KB. A ring R will be called K-primitive if 0 is a Ä-primitive ideal of

R. It is clear that every primitive ideal is primitive and that each K-

primitive ideal is prime.

Theorem 2.2.    K(Rv)=K(R)n.
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Proof. We suppose that R contains an identity. It suffices to show

that R is /¿-primitive if and only if Rn is /¿-primitive. If R is /¿-primitive,

then there is MeKR such that (0:M)=0. Let M' be the /{„-module of

1 x« matrices over M. It is easy to see that (0:M')=0 which is a prime

ideal of Rn [5, Theorem 4.28, p. 72]. If N' is an /?„-submodule of M' such

that (TV':M')=0, then the set N of all the entries of the elements of N' is

an /?-submodule of M and also (N:M)=0. Therefore A=0 and N'=0,

so that M' g KR  and Rn is /¿-primitive.

Conversely, if Rn is /¿-primitive, then there is M' e KRn such that

(0:M')=0. Let M={xEn\x e M', líS/íS«}, where Ea denotes the nxn

matrix with 1 in the (;', 1) position and 0 elsewhere. Then M is an R-

module such that (0: M)=0 which again is a prime ideal of R. If N is an

Ä-submodule of M such that (N:M)=0, then A' = {2 xEv\x e N,

l<j*Zn} is an /?„-submodule of M' such that (N':M') = 0. For if A e

(N':Mr), say A = (aij)', and if y e M, say y=xEpl, where x e M', then

for  each   i, j yaij=xEplaij=xEJ)iAEn=zEjl,  where  zeN'.   Let z—

2 wElk, where each w e N. Then zEn is an element of the form wExl=w

in N if some of the k's happen to bey, or zEn is 0 if none of the &'s isy.

In any case zEn e N so that yau e A for every y e M. Thuso¿3 e (N:M)=0

for all i, j, and A=0. Therefore (N':M')=0. Since M' e KRn, N'=0.

This implies that ^=0, for if y e N, then y=yEn e N'=0. The proof is

now complete.

All the previous results are valid also for the class HR of all A-modules

M such that (0:M) is a prime ideal of R and whose only submodule N

such that (0:A/) = (0:M) is N=M. The proofs are analogous. Moreover

the radical property H is inherited by right ideals.

If D is an integral domain (not necessarily with identity), then D e KD

and (0:D) = 0 so that D is K-primitive. (This fact was first observed by

Mr. Rafael Cardona Oviedo.) Hence K^J, the Jacobson radical. In

fact, the commutative /¿-primitive rings are exactly the integral domains.

Hence for commutative rings, K(R)=P(R), the prime radical. The

arbitrary /¿-primitive rings are studied in the next section.

An example showing that H^J is any nonsemisimple principal ideal

domain since these are //-semisimple. Let R be a principal ideal domain

with identity and let p be a generator of a maximal ideal of R. Then

C]piR = 0. Take as a unital /^-module M, the general Prüfer module

R(px) (cf. [3, p. 15] or [2, p. 143]) generated by x,, x2, • • • , x„, • • • such

that x,/?=0, x2/?= v,, • • • , xn+1p=xn, ■ ■ ■ . Then the only proper sub-

modules of M are x17?<x2/?<- ■ <xnR<- ■ ■ . For each of these,

(0:xiR)=piR, while (0: M)=0. Therefore M e HR and R is //-primitive.

3. /¿-primitive rings. If M 6 KR, then M is uniform in the sense that

every nonzero submodule is essential. This is easy to see since if N and N'
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are submodules of M such that NnN'=0, then (N:M)n(N':M)=

(A/nV:M) = (0:M) so that (N:M) = (0:M) or (N':M) = (0:M) and
7v=0 or N'=0. Moreover the only submodules of M of the form /* =

{x e M\xl=0}, where lis an ideal of R, are 0 and M. (Dually, if M e HB,

then every proper submodule of M is small. Also the only submodules of

M of the form MI, where I is a right ideal of R, are 0 and M.)

Lemma. IfR is a subdirectly irreducible K-primitive ring, say 0= (0 : M),

where M G KR, then M is subdirect ly irreducible.

Proof. Let N¡ be submodules of M such that (~) N(=0. Then

D (Afi:M) = (fl Ni:M) = 0. Since R is subdirectly irreducible, (Nt:M)=0

for some /'. Hence some Ni = 0.

Theorem 3.1.    Every K-primitive subdirectly irreducible ring is primitive.

Proof. If R is a /¿-primitive ring, then there is M in KR such that

(0:M)=0. Let V be the heart of M. Then Fis an irreducible R-module

and (0:K)=0 since V^O implies (V:M)¿¿(0:M) so that (0:V)=

(0:M)=0.
Therefore, for subdirectly irreducible rings R, K(R)=J(R). In what

follows, M and M denote the injective hull and the quasi-injective hull

of M, respectively. We follow the ideas and result of [6].

Theorem 3.2.    If M e KB, then D=HomB(M, M) is a division ring.

Proof. Let k e Homi?(M, M) such that Mk^O. Since Mis an essential

extension of M, N=MkDM9i0. Then (0:N)=(0:M) because MeKB.

But (Ker k nM:M) = (0:N) so that Ker krW=0 and Ker&=0. Applying

the lemma in [6], D is a division ring.

It follows now from the results of [6] that if M g Kb and x,y e M, then

(0:x)>(0:j>) implies x=0. If TV is a nonzero submodule of M, then

(N:x) = (0:y) impliesy=0.

Theorem 3.3. Every K-primitive ring is a subring of a full ring of linear

transformations of a vector space over a division ring.

Proof. Let M e KR such that (0:M)=0. Then M is a right vector

space over D=HomR(M, M). For each a e R, let a' e HomD(M, M)

defined by xa'=xa for all x g M. The map a-^-d is a ring monomorphism

of R into Hom^M, M).

Corollary. Every K-semisimple ring is a subdirect sum of subrings

of full linear rings.

Added in proof. Any simple radical ring is prime and subdirectly

irreducible, hence A"-radical. Thus P^K.
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