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THE  CRITICAL  POINTS  OF  A TYPICALLY-REAL  FUNCTION

A.   W.   GOODMAN1

Abstract. The critical points of a typically-real function can-

not lie too close to the real axis. By adding a mild restriction, we

determine Dk the domain of variability of a A:th order critical point.

Similar results are obtained for a kth order branch point. We

determine the domain of univalence for typically-real functions and

propose a reasonable conjecture for the domain of ¿-valence.

1. Introduction.    A function
00

(1) /(*) = z + 2 a„*">

regular in F:|z|<l, is said to be typically-real if it satisfies the condition

(2) (3/(z))(3z) > 0

for all nonreal z in E. This class of functions (which we denote by TR) was

introduced by Rogosinski [9] in 1932 and has been the object of many

investigations ([2], [3], [7]).

The condition (2) implies that f(z) is real in E, if and only if z is real.

Further it implies that if — 1<z<1, then/'(z)>0. It is intuitively obvious

that if c is a critical point of f(z), a point where/'(z)=0, then c cannot lie

too close to the real axis. In this work we determine this forbidden domain

precisely. More generally, if ck is a critical point of kth order, it cannot lie

too close to the real axis. In this case we advance the conjecture that a

certain domain Dk is the forbidden domain. If we add a suitable condition

on f(z), then we can prove that ck $ Dk. We also obtain similar results

about the location of a branch point bk=f(ck) when f(z) e TR. The work

closes with a theorem on the domain of univalence of the class TR and a

conjecture on the domain of fc-valence of the class TR. Our main tool is the

theory of subordination, but we also use a Stieltjes integral representation

due to M. S. Robertson [7].
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2. The example function. In any subordination argument we need an

example function which is a superordinate function for the problem

under consideration. Let §k be the surface obtained by attaching to a base

plane k half planes 3w>0 at a branch point Bk = \Bk\i; and k half planes

3w<0 at Bk, where Bk is yet to be determined. Let Fk(z) be the function in

the class TR that maps F onto the surface Sk. We will obtain Fk(z) explicitly

by a sequence of transformations. We consider first the half disk E{1) =

Fn{z|9?z<0}. The linear transformation u= — (\-\-zi)¡(i-\-z) maps E(l)

onto the first quadrant; then v=u2 carries this quadrant onto the upper

half plane, and finally w= — i(v—i)l(v+i) takes this half plane onto E. The

composition of these mappings gives

1     J-    1-7    —     V2

(3) Tx(z) =     + f      \,
1 — 2z — z

a function that carries F(i> onto E. It is important to note that: Tx(0) = l,

Tx(i) = i, F,(—1)= —1, and Tx(—/)=—/. Hence the diameter from — i to

i is mapped onto the arc —i, I, i of the boundary of E.

Next, with k a fixed natural number, let r¡ = e"t/ík+v, and let

(4) T2(z) = (z + s)l(\ + sz),

where s is real and adjusted so that T2 maps the arc — i, 1, i onto the arc

fj, 1, r¡. A brief computation gives

(5)

The function

COs(7r/(fc + 1))

1 + sin(7r/(/c + 1))

(6) T3(z) = (1 - z*+1)/(l + z*+1)

carries E onto a domain consisting of k+l half planes 9îw>0. It is worth

noting that F3 maps the arc fj, 1, rj onto the imaginary axis.

Finally we define Fk(z) by

(7) Fk(z) = ' T3(T2(Tx(iz)))
2(k + \)A

where

(8) A = (1 - s)l(l + s).

By our construction Fk(z) maps the half disk F(+)=FO{z|3z>0} onto the

surface formed by k+l half planes 3w>0, tied together with a kth order

branch point. If we reflect the half disk across the real axis, and the image

domain across the real axis, we find that Fk(z) maps E onto §k as required.
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A computation shows that

(9) F (z) =_!_P*+1(z) - 6*+1(z)

2(k + \)A Pk+\z) + Qk+1(z) '

where

(10) P(z) = 1 - 2.4/z + z2,       Q(z) m 1 + 2Aiz + z2.

The factor l/2(k+l)A is selected so that F'k(0) = l. We have

Lemma 1. For each positive integer k, the function Fk(z), defined by

equations (5), (8), (9), and (10), maps E onto the surface §k. Further

Fk(z) e TR. Fk(z) has two critical points of kth order, one at

(11) ck = Rki=((A2+\r2-A)i,

and the other at —Ck. The corresponding branchpoints are at ±i/2(k+l)A =

±Bk.

In particular, k—\, 2 gives

(12) Fx(z) = Z(í + Z2,        RX = J2-1,        Bx = i/4,
(i - zy

and

ri«    «M     z(9 + 14z2 + 9z4)
(13) F2(z) =        _ +       ,       K2 = V3/3,       ß2 = !/2V3.

3. The critical points. Let Dk be the domain that is bounded above by

the arc of the circle through the points — 1, Rki, and 1, and bounded below

by the arc of the circle through — 1, — Rki and 1. Here Rk is defined by

equations (5), (8) and (11). Then we have

Theorem 1. Suppose that f(z) e TR and that f(z) has a kth order

critical point at ck. Suppose further that f(ck)=bk, and that the equation

f(z)=bk has no solution in E, except z = ck. Then the point ck must lie in

E—Dk. Further, for each ck in E—Dk there is an f(z) e TR that has a kth

order critical point at ck. Ifck is on the boundary of Dk and ck^±\, then

f(z) is unique.

Proof. Since each function in TR has real coefficients, the image of F

is symmetric with respect to the real axis. Hence we can restrict our attention

to critical points that lie in E{+) and branch points that lie in the upper half

plane. If f(z) eTR and r is in (—1, 1), then

(14) «z) s (/ [f^f) - /«) /(I - r2)f'(r)
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is also in TR. Since (z+r)/(l +rz) moves the critical point along an arc of

a circle through the points — 1 and 1, we can select r so that (f>(z) has its

corresponding critical point on the imaginary axis. Hence without loss of

generality we may assume that 9?c,.=0 and 3cÄ>0. Consequently it will be

sufficient to prove that \ck\^.\Ck\=Rk. Next, we observe that if f(z) e TR,

then —/(—z) is also in TR. Hence if bk = a. + iß is the corresponding branch

point we may assume that a^O, and ß>0.

We now adjust our example function Fk(z) so that it has the same branch

point. Since Fk(z) maps (— 1, 1) onto the real axis there is a real / such that

Fk(t) = a\Bk\lß. Further, we set a=ß/\Bk\>0. Then a brief computation

shows that

(15) H(z) = a *(rfs)+ Fk(t)

has a kth order critical point at Ck=(Ck+t)l(l+tCk) and that H(C*) =

a + iß=bk. Since Fk(z) is an odd function, we also have //(0)=0. If H(E) =

S*, then 5* is merely a translation followed by an expansion (or a con-

traction) of S.

Let z=G(w) be the inverse function of H(z) defined on S*. Let us assume

for the moment that the composite function J(z) = G(f(z)) is well-defined.

If so, it satisfies the conditions of Schwarz's lemma because f(z) maps E

onto a surface S that is "carried" by S*, and G takes S* onto E. Further,

/(0) = G(/(0))=G(0)=0. Consequently for any z in E, |/(z)| = |z|, and

because of our normalization the equality sign holds if and only if J(z)=z.

Now J(ck) = G(f(ck)) = G(Bk)=(Ck + t)l(l+tCk). Hence

|cfc| = \(Rki + /)/(l + tRj)\ > Rk,

with equality only if / = 0.

It remains to show that/(z) is well-defined. This is the case if f(z) is sub-

ordinate to H(z). The concept of subordination was first used by Lindelöf

[4], but the terminology was suggested by Littlewood [5]. The method was

extensively exploited by Littlewood [5], Nehari [6], Rogosinski ([8], [10],

[11], [12]), and others [2], In most of the applications the superordinate

function is either univalent or locally univalent. Whenever critical points

occur in H(z), the problem is avoided by adopting an alternate definition:

f(z) is subordinate to H(z) if there is a J(z) such that f(z) = H(J(z)) and

J(z) satisfies the conditions of Schwarz's lemma. Littlewood [5], and

Beckenbach and Graham [1] give the following geometric criterion for

f(z) to be subordinate to H(z).

Let f(E) = S and let H(E) = S*. If there is a mapping of S into S* such

that each point w of S goes into a point of S* with the same complex co-

ordinate, and each closed contour on S beginning and ending at /(0)
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goes into a closed contour of S* beginning and ending at H(0), then f(z)

is subordinate to H(z), and the representation f(z) = H(J(z)) is indeed

possible.

A mapping of the type just described will be called an 5*-projection.

In our problem /(0) = //(0)=0 and both functions have no other zeros in

E. Both functions are univalent in a neighborhood of z=0, and hence

there is an S*-projection in a neighborhood of w=0. Let y0 be the radial

segment from z=0 to z=ck and let ro=/(y0). Since the inverse of H(z) is

locally univalent except for the point w=bk=Bk, there is an S'*-projection

of ro onto a curve Y* of S*.

If y is any radial segment that does not pass through z=ck or z=ck and

Y=f(y), then the 5'*-projection of Y established near w=0 can be con-

tinued over all of Y because f(z)^bk, bk on Y, and S* is locally univalent

everywhere except at bk and bk. Finally consider the points w—f(z) where

z is on the extension of the radial segment to ck. Since every simple closed

curve that encloses ck (and not ck) has an image under f(z) that winds

around bk, k times, and the same is true of the image under H(z), the S*-

projection can be extended to the remaining points of 5". It is clear that the

correspondence just described satisfies the Littlewood requirements, and

hence/(z) is subordinate to H(z).

To establish an 5*-projection it was necessary to assume that f(z)=bk

has no solution in E other than z = ck. We conjecture that Theorem 1 is

true without this hypothesis. A proof for the case k= 1 will be given in §5.

4. The branch points. Let Fk(z) be the extremal function defined in §2,

and for each real /in (— 1, 1), set

(16) Fk(z, t) = (^(ff^) + Fk(i))/W)0 - ñ-

The function Fk(z, t) has one critical point on the upper boundary of Dk,

and as / varies, this critical point (together with its conjugate) describes

the boundary of Dk (except for the points ±1). The corresponding branch

points describe two curves, Yk+)(w) in the upper half plane, and Yk~](w)

in the lower half plane. Since Fk(Ck) = i¡2(k+l)A = Bk the curve Yk+)(w) has

the parametric representation w=(Fk(t) + \Bk\i)l(F'k(t)(\ — t2)). A brief

computation will show that for each fixed k, the curve Yk+)(w) is starlike

with respect to the origin and that as t—»-±1, w—>-±¿.

Let Dk(w) be the union of the real axis and the domain bounded above

by Yk+)(w) and below by Yk~)(w). With this notation we have

Theorem 2. Let f(z) satisfy the conditions of Theorem 1. Then bk $ Dk(w).

For each point bk in the complement of Dk(w), there is an f(z) e TR with a
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kth order branch point at bk. Ifbk is on Yk+) (w)^JYk") (w) then there is only

one such function.

Proof. As in §3, we select a and / so that f(z) and H(z) have the same

branch point at bk. If G(w) is the inverse function of H(z) on S*, then/(z) =

G(f(z)) satisfies the conditions of Schwarz's lemma. Consequently 0<

J'(0)_1, and equality occurs if and only if J(z) = z. But

f'(0) 1
(17) J'(0) =-J-^1- =- < 1.

«F¿(-í)(l - ñ     aFk(t)(í - t2) -

Hence a>\¡F'k(t)(\— t2) and consequently H(z)=pFk(z,t) where psZl,

with equality if and only if f(z)—Fk(z, t). Therefore the branch point of

f(z) lies at the end point of a radial segment that terminates on or passes

through r[+,(w') VjYk~\w). Since each of these curves is starlike with respect

to the origin, this completes the proof.

5. A remark on valence. W. E. Kirwan [3] has proved that the radius

of univalence for the class TRis y/2—l. Since Cx = (s/2— l)/and since the

transformation (14) moves this critical point along the upper boundary of

Cx, Kirwan's result will give Theorem 1 when k=l.

I am indebted to E. B. Saff for calling my attention to the paper by

Kirwan. Saff also suggested that perhaps Kirwan's circle of univalence

could be enlarged to include the domain Dx.

Theorem 3. Let f(z) e TR. Then f(z) is univalent in Dx and Dx is the

maximal domain of univalence for the class TR.

Proof. By the symmetry we can restrict ourselves to the upper half

disk F(+>. Let f(zx)—f(z2) with zx and z2 in F<+). There is a minimal arc of a

circle through ± 1 on which univalence fails, and hence we can assume that

zx and z2 lie on this arc. By a transformation of the type (14) we may

further assume that z, and z2 are symmetric with respect to the y-axis.

Let z2=x+iy, zx=—x+iy where x>0 andy>0.

M. S. Robertson [7] proved that each function in TR has a Stieltjes

integral representation

<i8>   ™-kÍ, /*"!+.- f*»—77 Jo 1 — 2z cos Ö + z Jo

where p(6) is nondecreasing on [0,7r]. Consequently if f(zx)=f(z2) we



1973] THE  CRITICAL  POINTS  OF  A  TYPICALLY-REAL  FUNCTION 101

have

(19)

0 - f'(i-,    Z2   ^   2 - ,-o    Zl   fl^   2) ^(0)
Jo \1 — 2z2 cos 0 + z2      1 — 2zj cos 0 + zf/

_ f*(Z| - zi)(l - zxz2) dp(B)

Denominator

Since (z2—zx)(\— zxz2)^Ç) we can write that

dp(6)
(20) 0 -fJo Den.

Now equation (20) is impossible if 9î(Den.)>0. But

5R(Den.) = 1 - 2x2 - 6y2 + (x2 + y2)2 + 4(x2 + y2)sin2 d

= 1 - 2x2 - 6/ + (x2 + y2)2.

(21) <R(Den.) = (1 - x2 - y2 - 2y)(l - x2 - y2 + 2y),

with equality only if 0=0, or 7r (p(0) has jumps only at 0 or tr). Since the

two factors on the right side of (21) will give equations for the circles that

form the boundary of Dx we see that sJ?(Den.)>0 in Dx.

It is clear that if f(z) e TR, the image of Dx under f(z) need not be star-

like with respect to w = 0. However, it seems likely that the image will be

convex in the direction of the imaginary axis.

It also seems likely that every f(z) e TR is at most ^-valent in Dk for

every natural number k. If so, then our example functions show that Dk is

the maximal domain of Ar-valence for the class TR.
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