A NEW SIMPLE LIE ALGEBRA OF CHARACTERISTIC THREE

MARGUERITE FRANK

ABSTRACT. We define a restricted simple algebra T of dimension 18 over an arbitrary field of characteristic 3. From a certain property of its Cartan decomposition, we show T to be nonisomorphic to any known algebra of identical dimension.

0. The algebra T furnishes the first instance of a graded simple Lie algebra:

$$(0.1) L = L_{-1} \oplus L_0 \oplus \cdots \oplus L_n, [L_i, L_j] \subseteq L_{i+j},$$

in which L_0 is a solvable algebra of dimension greater than 1.

Contained in T is a 10-dimensional simple restricted graded algebra S, with $S_i \subseteq T_i$, and S_0 solvable, whose newness is still an open question.¹

1. **Definition of** T. Let F be a field of characteristic 3. The algebras S and T, alluded to above, are realized as subalgebras of the Witt-Jacobson algebra W_3 over F. This algebra is spanned by derivations:²

$$A = (a_1, a_2, a_3) = a_1 \Delta_1 + a_2 \Delta_2 + a_3 \Delta_3,$$

where $a_i \in F[x_1, x_2, x_3]$ with $x_i^3 = 0$, and Δ_i denotes the differential operator $\partial/\partial x_i$. If $B = (b_1, b_2, b_3)$, multiplication in W_3 is given by $[A, B] = C = (c_1, c_2, c_3)$, where

$$(1.1) c_i = \sum_j [(\Delta_j a_i) b_j - (\Delta_j b_i) a_j].$$

The two algebras have nested gradations

(1.2)
$$S = S_{-1} \oplus S_0 \oplus S_1,$$

$$T = T_{-1} \oplus T_0 \oplus T_1 \oplus T_2 \oplus T_3,$$

$$[S_i, S_i] \subseteq S_{i+i}, \quad [T_i, T_i] \subseteq T_{i+i}, \quad S_i \subseteq T_i,$$

Received by the editors March 28, 1972.

AMS (MOS) subject classifications (1970). Primary 17B20.

¹ Although R. Wilson has shown S to be nonisomorphic to the classical matrix algebra of type B_2 , the possibility still remains that S is one of the 10-dimensional algebras of [1], [5], or [6].

² Cf. [4].

where the subspaces S_i and T_i have the following bases over F:

$$T_{-1} = S_{-1} = \langle \Delta_1, \Delta_2, \Delta_3 \rangle,$$

$$S_0 = \langle A_1 = (x_1, x_2, x_3), A_2 = (0, x_2, -x_3),$$

$$A_3 = (x_2, x_3, 0), A_4 = (0, x_1, -x_2) \rangle,$$

$$S_1 = \langle B_1 = (x_1 x_2, x_1 x_3, -x_2 x_3), B_2 = (x_1^2, x_1 x_2, x_2^2),$$

$$B_3 = (-x_2^2, x_2 x_3, x_3^2) \rangle,$$

$$(1.3) \quad T_0 = S_0 \oplus \langle A_5 = (x_3, 0, 0) \rangle,$$

$$T_1 = S_1 \oplus \langle B_4 = (x_1 x_3, 0, x_3^2), B_5 = (x_2 x_3, -x_3^2, 0),$$

$$B_6 = (x_3^2, 0, 0) \rangle,$$

$$T_2 = \langle C_1 = (x_2^2 x_3 - x_1 x_3^2, x_2 x_3^2, 0),$$

$$C_2 = (x_1^2 x_3 - x_1 x_2^2, x_1 x_2 x_3, x_2^2 x_3), C_3 = (x_1 x_2 x_3, -x_1 x_3^2, x_2 x_3^2) \rangle,$$

$$T_3 = \langle D_1 = (x_1 x_2^2 x_3 + x_1^2 x_3^2, x_1 x_2 x_3^2, x_2^2 x_3^2) \rangle.$$

THEOREM 1.1. The algebras S and T are restricted central simple algebras with a natural gradation such that $S_0^{(4)} = T_0^{(4)} = 0$.

PROOF. We verify at once that

$$[S_i, S_1] = S_{i+1} (i = 0, 1),$$

$$[T_i, T_{-1}] = T_{i-1} (i = 1, 2, 3),$$

$$[T_0, T_3] = T_3.$$

The simplicity of S and T follows at once from (1.4) and the fact that the set of transformations induced in S_{-1} , T_{-1} by multiplication by elements of S_0 and T_0 , respectively, is irreducible.³ Indeed if $\mathfrak{A} \neq 0$ is an ideal of S, then for some $0 \leq r \leq 2$, $\mathfrak{A}(\text{ad } S_{-1})^r \neq 0 \subseteq S_{-1} \cap \mathfrak{A}$, and the irreducible representation of $S_0 \rightarrow \text{Hom } S_{-1}$ then implies that $\mathfrak{A} \supseteq S_{-1}$. But then, by (1.4), $\mathfrak{A} \supseteq S_0 \oplus S_1$, $\mathfrak{A} = S$, and S is central simple. Similarly if $\mathfrak{A} \neq 0$ is an ideal of T, $\mathfrak{A} \supseteq T_{-1}$ and, by (1.4), $\mathfrak{A} \supseteq \text{all } T_i$, and T is central simple also.

The restrictedness of S and T follows at once from the restrictedness of S_0 and T_0 , respectively.⁴ Indeed, denoting by A^3 in W_3 the third iterate of the derivation A, it is easily verified that $A_1^3 = A_1$, $A_2^3 = A_2$, while $A^3 = 0$ for all remaining basis elements of S and T.

We finally observe that the derived algebras of S_0 and T_0 have the following bases over F:

(1.5)
$$S_0^{(2)} = \langle A_1, A_3, A_4 \rangle, \qquad S_0^{(3)} = \langle A_1 \rangle, \qquad S_0^{(4)} = 0.$$
$$T_0^{(2)} = \langle A_1, A_3, A_4, A_5 \rangle, \quad T_0^{(3)} = \langle A_1, A_3 \rangle, \quad T_0^{(4)} = 0.$$

³ Theorem 4.3 of [3] states that a naturally graded subalgebra G of the Witt-Jacobson algebra W_n containing all $\partial/\partial x_i$ is simple if and only if $G = G^2$, $G_0 = [G_{-1}, G_1]$, $G_1 = [G_1, G_0]$ and the representation of G_0 in G_{-1} is irreducible.

⁴ Cf. Theorem 3.3 of [3].

2. Cartan decomposition. The subspace $H = \langle A_1, A_2 \rangle$ is an abelian subalgebra of S and T. For $w \in H^*$, define

(2.1)
$$T_w = \{t \in T \mid t \text{ ad}(A) = w(A)t \text{ for all } A \in H\},$$
$$S_w = \{s \in S \mid s \text{ ad}(A) = w(A)s \text{ for all } A \in H\}.$$

If $w_i(A_j) = \delta_{ij}$ (i, j=1, 2), it follows directly that

$$H = T_0 = \langle A_1, A_2 \rangle,$$

$$T_{w_1} = \langle B_2, B_5 \rangle, \qquad T_{-w_1} = \langle \Delta_1, C_3 \rangle,$$

$$(2.2) \qquad T_{w_2} = \langle A_3, D_1 \rangle, \qquad T_{-w_2} = \langle A_4, A_5 \rangle,$$

$$T_{w_1+w_2} = \langle B_1, B_6 \rangle, \qquad T_{-w_1-w_2} = \langle \Delta_2, C_2 \rangle,$$

$$T_{w_1-w_2} = \langle B_3, B_4 \rangle, \qquad T_{-w_1+w_2} = \langle \Delta_3, C_1 \rangle.$$

$$H = S_0 = \langle A_1, A_2 \rangle,$$

$$S_{w_1} = \langle B_2 \rangle, \qquad S_{-w_1} = \langle \Delta_1 \rangle,$$

$$S_{w_2} = \langle A_3 \rangle, \qquad S_{-w_2} = \langle A_4 \rangle,$$

$$S_{w_1-w_2} = \langle B_1 \rangle, \qquad S_{-w_1+w_2} = \langle \Delta_2 \rangle,$$

$$S_{w_1-w_2} = \langle B_3 \rangle, \qquad S_{-w_1+w_2} = \langle \Delta_3 \rangle.$$

Thus H is a splitting Cartan subalgebra of both S and T, with roots $\alpha = \lambda_1 w_1 + \lambda_2 w_2$ for integers $\lambda_i = -1, 0, 1$.

3. Newness of T. The only known simple algebra of dimension 18 is the Witt-Jabobson algebra W_2 . As shown in [2], every Cartan subalgebra of W_2 is conjugate to one and only one of

$$H_1 = \langle (x_1, 0), (0, x_2) \rangle, \quad H_2 = \langle (x_1 + 1, 0), (0, x_2) \rangle,$$

 $H_3 = \langle (x_1 + 1, 0), (0, x_2 + 1) \rangle.$

If H is a Cartan subalgebra of a Lie algebra L, let n(L, H) denote the number of pairs (unordered) of roots $\{\alpha, -\alpha\}$ such that $[L_{\alpha}, L_{-\alpha}] = H$. Then n(L, H) depends only on the conjugacy of H. We prove⁵

LEMMA 3.1. If H is a Cartan subalgebra of W_2 , then $n(W_2, H) \ge 2$.

PROOF. By writing $H = \langle \theta_1 = (y_1, 0), \theta_2 = (0, y_2) \rangle$, where $y_1 = x_1$ or $x_1 + 1$, $y_2 = x_2$ or $x_2 + 1$, we can prove the lemma for all three H_i at once. Let

$$U_w = \{u \in W_2 \mid u \text{ ad}(\theta) = w(\theta)u \text{ for all } \theta \in H\}.$$

⁵ The author is indebted to R. Wilson for suggesting a proof based on [2] much simpler than her original one. The related proof given here is even shorter.

Letting $w_i(\theta_i) = \delta_{ij}$ for i, j = 1, 2, we determine

$$\begin{split} U_{w_1} &= \langle (y_1^2, 0), (0, y_1 y_2) \rangle, & U_{-w_1} &= \langle (1, 0), (0, y_1^2 y_2) \rangle, \\ U_{w_2} &= \langle (y_1 y_2, 0), (0, y_2^2) \rangle, & U_{-w_2} &= \langle (y_1 y_2^2, 0), (0, 1) \rangle. \end{split}$$

It is at once immediate that $[U_{w_1}, U_{-w_1}] = [U_{w_2}, U_{-w_2}] = H$ for all allowable substitutions for y_1 and y_2 . Thus $n(W_2, H) \ge 2$.

Theorem 3.1. The algebra T is not isomorphic to W_2 and is therefore new.

PROOF. For $\alpha=w_1$, w_2 , w_1+w_2 the subspace $[T_\alpha,T_{-\alpha}]$ is equal to $\langle A_1+A_2\rangle$, $\langle A_1\rangle$, $\langle A_1-A_2\rangle$, respectively. While $[T_{w_1-w_2},T_{-w_1+w_2}]=H$. Hence n(T,H)=1, and by Lemma 3.1, T cannot be isomorphic to W_2 .

BIBLIOGRAPHY

- 1. G. Brown, Lie algebras of characteristic three with nondegenerate Killing form, Trans. Amer. Math. Soc. 137 (1969), 259-268. MR 39 #2825.
- 2. S. P. Demuškin, Cartan subalgebras of the simple Lie algebra W_n and S_n , Sibirsk. Mat. Ž. 11 (1970), 310-325=Siberian Math. J. 11 (1970), 233-245. MR 41 #6919.
- 3. M. Frank, On a theory relating matric Lie algebras of characteristic p and subalgebras of the Witt-Jacobson algebra, Progress Report I.T., Math. Dept., University of Minnesota, Minneapolis, Minn., 1943, pp. 107-121.
- 4. N. Jacobson, Classes of restricted Lie algebras of characteristic p. II, Duke Math. J. 10 (1943), 107-121. MR 4, 187.
- 5. I. Kaplansky, Lie algebras of characteristic p, Trans. Amer. Math. Soc. 89 (1958), 149–183. MR 20 #5799.
- 6. A. I. Kostrikin, A parametric family of simple Lie algebras, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970), 744-756=Math. USSR Izv. 4 (1970), 751-764. MR 43 #302.
 - 115 Broadmead, Princeton, New Jersey 08540