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GENERAL WIENER-HOPF OPERATORS AND THE
NUMERICAL RANGE OF AN OPERATOR

VICTOR  J.   PELLEGRINI

Abstract. Let H be a separable Hubert space and A a bounded

operator on H. For a selfadjoint projection Poniiwe consider the

general Wiener-Hopf operator TP(A)=PABtP) where R(P) denotes

the range of P. In this paper we study the relation between TP(A)

and W(Á), the numerical range of A. In particular we characterize

those operators A such that Tr(A) is invertible for every P.

We begin in §1 with a factorization theorem motivated by a classical

result of Wiener and Hopf (see Introduction to [1] for a discussion). We

use this in §2 to characterize those operators A for which TP(A) is 1-1 for

every P. §3 contains the characterization of those operators A such that

TP(A) is invertible for every A. In §4 we strengthen the factorization result

of §1 under the assumption that A is normal and its numerical range lies in

a cone.

Before proceeding with the main body of the paper the author wishes to

thank Professor Marvin Shinbrot for suggestions which simplified the

proof of Theorem 1.3.

1. Our aim in this section is to prove a factorization theorem similar to

that in [1, Theorem 5]. We assume throughout this section that A is a

bounded, 1-1 operator on H with range, R(A), dense in H and that F is a

fixed selfadjoint projection on H.

Let {y^}, {yñ} and {<fô De complete orthonormal systems in

c\(R(A*P)), R(Q) and R(P) respectively (where Q=I-P). Since R(A) is

dense, A* is 1-1. Thus the cardinalities of {ipX} and {<££} are the same.

1.1 Lemma. The formula Sf=y (fiyt,)<f>~n + Z(fiy>n)vñ defines a
bounded linear operator on H whose adjoint is given by S*g= 2 (?> fôri+

2 (g, v>n)vñ-
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Proof. Let T be the orthogonal projection on cl(R(A*P)). Then for

eachfe H

\\Sf\\2 = 2\(f^t)\2 + ^\(f^-nW

^ii7/T + iie/!i2

^2 ||/p.

Thus S is bounded. The formula for S* is a straightforward computation.

1.2 Lemma.    IfTP(A) is 1-1 then S is 1-1.

Proof. The formula for S* yields S*<f>k=yk and S*y)k=ipk where

<f>k and y>k are as in 1.1. From this we conclude that cl(R(S*)) contains the

space cl(R(A*P)) + R(Q). If h is orthogonal to cl(R(S*)), then it is orthog-

onal to R(Q) and thus « e R(P). Since h e R(P) and h is orthogonal to

d(R(A*P)), we have that (TP(A*)p, h) = (A*p, /?)=0 for each /> e i?(P).

Thus hecl(R(Tr(A*)))1=N(TP(A)) = {0}, where N(TP(A)) denotes the

null space 7>(/l)- Thus cl(/?(5,*))1=Af(5)={0}.

1.3 Theorem. Let A be a bounded, 1-1 operator on H whose range,

R(A), is dense in H. Let P be a selfadjoint projection on H. Then ifTP(A) is

1-1, we may factor A as A = A_A+ where

(1) A+ is a bounded, 1-1 operator satisfying R(A+P)^ R(P),

(2) A_ is a 1-1 operator with D(A_) = R(A+) satisfying R(AZ1Q)^R(Q).

Proof. Since TP(A)is 1-1, we have by 1.3thatSis 1-1. LetA+ = Sand

A_=AS-\

If pe R(P), then Sp= 2 (p, Wn)K+1 (j>, V~n)v>ñ= I (p, y>t)& Thus
Sp e R(P).

If q e R(Q)r\D(A1), we have (A~1q,f1n)=Ç) for all « since yt e

cl(R(A*P)). Thus for q e R(Q)nD(AZ1) = R(Q)nD(A^) we have

AZxq = 2 (A~^, V*)1^ + 2 (^"V' V«)V» = 2 (A~la> iPîDvn

which implies /fl1«? e R(Q).

1.4 Corollary. // TP(A)u=v where v e R(P)nD(A-1), then u=

A^PAZh.

Proof. We have Au = v + q where q e R(Q). Thus A+u = AZ1v + AZ1q.

Hence A+u=PAZ1v, from which the result follows.

2. We now characterize those bounded operators A with the property

that T],(A) is 1-1 for every orthogonal projection P. We introduce some

notation. A factorization of the type given in 1.3 will be called a Wiener-

Hopf factorization (W-H factorization) for A with respect to P. If

the factors A_ and A+ are invertible and satisfy R(A+P) = R(P) and
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R(A_1Q) = R(Q), we call the factorization a strong Wiener-Hopf factori-

zation.

2.1 Theorem. Let Abe a bounded operator on H. Then the following are

equivalent :

(1) Tp(A) is 1-1 for every projection P,

(2) A admits a W-H factorization with respect to every projection P,

(3) There exists a complex number X0 of absolute value 1 such that

ReX0A>0.

Proof. Suppose that (1) holds. Let W(A) = {(Ax, x):\\x\\ = l} be the

numerical range of A. Suppose 0 e W(A). Then there exists an x^Ob:

(Ax0, x0)=0. Let Pn be the projection on the one dimensional subspace

spanned by x0. Thus P0y=(y, x0)x0 for each y e H. Then TI>o(A)xo=0

which is a contradiction. Since 0 ^ W(A) and W(A) is convex [3, Problem

166] we conclude that (3) holds.

Now suppose that (3) holds. Let F be a projection. Then the operator

X0A satisfies the conditions of 1.3 and thus admits a W-H factorization

with respect to P, X0A=C_C+. Hence A = (Xô1C_)(C+) is the required

factorization of A with respect to P. Hence (2) holds.

Finally, suppose (2) holds. Let F be a projection and p e R(P). If

TP(A)p=0 then A_A+p=q where q e R(Q) (Q = I-P). This implies

A+p=Az}q and thus that A+p e R(P)nR(Q). Hence A, p=0 and, since

A+ is 1-1, p=0.

3. We are now ready to present our main, result. Before doing so let us

review some pertinent results of Devinatzand Shinbrot. In [1] they showed

that for a fixed projection P the following conditions are equivalent for an

invertible operator A :

(i) Tj,(A) is invertible,

(ii) A admits a strong W-H factorization with respect to F,

(iii) There exists an invertible operator L and ô>0 such that Re /!£_

<5>0and R(LP)=R(P).

The operator L depends on the particular choice of P. If TP(A) is invert-

ible for all F we will show that one can find an operator L which works for

all P. More precisely we have

3.1 Theorem.    Let A be a bounded operator on H. Then the following are

equivalent :

(i) Tp(A) is invertible for every P,

(ii) A admits a strong W-H factorization with respect to every P,

(iii) There exists a complex number X0 of absolute value 1  and a real

number <3>0 such that Re /L/l><5.
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Proof, (i) is equivalent to (ii) by the result of Devinatz and Shinbrot

stated above.

Suppose (iii) holds. Then 0 $ cl(W(X0A)). Since cl(W(TP(X0A))) contains

the spectrum of TP(XaA) [3, Problem 169] and lies in cl(vV(X0A)), we con-

clude that TP(X0A) is invertible for each P. Thus TP(A) is invertible for

each P. Hence (i) holds.

It remains to show that (i) implies (iii). Since TP(A) is invertible for every

projection P ¡t follows by 2.1 that there exists a X0 of absolute value 1 such

that Re X0A>0. Suppose that 0 e cl(W(A)). Then there exists a sequence

{xn} of unit vectors such that (Axn, x„)-»-0. Since the unit ball of H is com-

pact and metrizable in the weak topology the sequence {xn} has a weakly

convergent subsequence {xn }. Let y=limk_^a> xn . By the generalized

Schwartz inequality we have

(Re X0Ay,y)2 = lim |(Re X0Ay, x„k)\2

^ lim(Re X0Ay, y)(Re X0Ax„k, xn.)

= 0

(since (Axn, xn)->-0 implies (Re X0Axnjc, x„k)->0). Thus, since X0A>0, we

conclude that ^=0. Thus there exists a sequence {xn } of unit vectors such

that (Ax„k, x„k)->-0 and xn/-*-0 weakly. Hence by [2, Theorem 5.1], there

exists an infinite dimensional projection P0 3 : TPa(A) is compact. Hence

TPo(A) is not invertible. This is a contradiction. Thus 0 ^ cl(W(A)). Since

cl(yV(A)) is a closed convex set (iii) follows.

3.2 Corollary. TP(A) is invertible for every P if and only if 0 $

cl(W(A)).

For an operator B let a(B) denote its spectrum.

3.3 Corollary. X $ o(TP(A)) for every P if and only ifX$ cl( W(A)).

Thus cl(rV(A)) = \J {a(TP(A)):P a self adjoint projection}.

Remarks. (1) Let A be a bounded operator on a Hubert space H. A

complex number X is said to be in the essential numerical range of A if

there exists a sequence of unit vectors {xn} such that (Axn, xn)->X and

xn~*0 weakly [2]. We have shown, in the proof of 3.1 that cl(W(A))\W(A),

where the slash signifies complement, lies in the essential numerical range

of A.

(2) If A is not a nonzero scalar multiple of the identity then Williams

has shown in [5, Theorem 3] that there exists an invertible operator S on H

such that 0 e W^^AS). Hence by 3.1 (or by 2.1) there exists a selfadjoint

projection P 3 : TP(S-*AS) is not invertible. If we let E=SPS~1 then £ is a

skew projection (i.e. E2 = E but not necessarily selfadjoint) such that
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EAE\R(E) is not invertible. From this we conclude that EAE\R(E) is in-

vertible for every skew projection E if and only if A is a nonzero scalar

multiple of the identity.

4. The factorization in §1 obtained under the assumption 0^ W(A) is

considerably weaker than the one obtained by Devinatz and Shinbrot

under the assumption 0 $ c\(W(A)). In this section we show that the

assumption of normality and a further restriction on W(A) (short of 0 $

c\(W(A))) leads to a strengthening of the factorization in §1. The conditions

imposed on A are (except for the assumption that A is bounded) a natural

generalization of those in [4].

The following lemma can be proved by a simple adaptation of the

techniques used in the proof of [1, Theorem 5].

4.1 Lemma. Let N and M be closed subspaces of a Hilbert space H such

that dim N=dim M and dim N±=dim ML. Let V be a bounded operator

on H satisfying Re F5:r3>0. Then there exist invertible operators V_and

V+ on H such that

(1) v=v_v+,
(2) V+M=N, V„N± = MJ-.

4.2 Lemma. Let V and B be bounded operators on H. Suppose V is as in

4.1, and 5>0 and V commutes with B. If A = V ■ B, then there exists

bounded, 1-1 operators A_ and A+ on H such that

(1) A=A_A+,
(2) c\(R(A+P)) = R(P), R(A_Q)=R(Q).

Proof. Let M=c\(R(B1/2P)) and N=R(P). Then M1=R(B'i/2Q) and

N±=R(Q). Applying 4.1 to V we have F= V_V+ where V+ cl(Ä(Ä1/2F)) =

cl(R(V+B1,2P))=R(P) and V_R(Q)=R(B-li2Q). Set A+=V+ßi'2 and
A_ = B1/2V_. Then A_A+=B1/2V_V+B1/2=B1/2VB1/2 = BV=A.

Definition. Let C>0 and z=x+iy. The set {z:\y\^cx}, or any ro-

tation of such a set, will be called a cone.

For the remainder of this paper we will assume that A is 1-1 and normal.

Thus we may write A=VB where Fis unitary, 2?>0, and F commutes with

B.

4.3 Lemma. Let A be a normal, 1-1 operator. Let K+ be a cone lying in

the right half-plane. Suppose W(A)^K+. Then there exists a <5>0 such that

ReF^(5>0.

Proof. W(A)^K+ implies {(Ax, x):x e H}c Ky. Let <pv:H-*C he

defined by <pv(x)=(Vx, x). Then </>v(B1/2x) = (VBl/2x, B1/2x) = (Ax, x) e

K+ since B1'2 commutes with V. Since <pv is continuous, K+ is closed and
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R(B112) is dense in H we conclude that {(Vx, x):x e H}<=^K+. Thus cr(K)c

cl(W(V))<= K+. This implies o-(K)c{z:|z| = l}n^„ and hence co a(V), the

closed convex hull of a(V), is contained in a set of the form {z: Re ZïZo}.

Finally since V is normal, co a(V) = cl(W(V)) [3, Problem 171], and we

have our result.

4.4 Theorem. Let A be a 1-1 normal operator whose numerical range is

contained in a cone. Let P be a selfadjoint projection and Q = I—P. Then

there exist bounded, 1-1 operators having dense ranges such that

(1) A«*A^A+,
(2) c\(R(A+P))=R(P), R(A_Q) = R(Q).

Proof. There exists a <f>0, 0^</>0<27r, such that e^^A satisfies the

conditions of 4.3.

We conclude by remarking that a version of 4.4 is valid when A is un-

bounded. Details will appear in a later paper.
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