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VECTOR BUNDLES OVER FINITE
CW-COMPLEXES ARE ALGEBRAIC

KNUD LONSTED

ABSTRACT. It is proved that for any finite CW-complex X there
exists a ring A of continuous functions on X, and natural 1-1 corre-
spondences between the finitely generated projective 4-modules
(resp. A @ g C-modules), and the topological real vector bundles
(resp. complex vector bundles) over X where 4 is Noetherian and
has Krull-dimension equal to the topological dimension of X.

1. Introduction. In Bass [1] the strong analogy, between the Grothen-
dieck group of topological vector bundles on a finite CW-complex and
the Grothendieck group of finitely generated projective modules over a
Noetherian ring of finite dimension, was emphasized. The aim of this
paper is to give a natural explanation of this analogy, by exhibiting for
each finite CW-complex X a Noetherian subring 4 of C°(X, R), the
Krull-dimension of which equals the topological dimension of X, and
such that the inclusion A< C°(X, R) induces isomorphisms (Corollary 2),

(1) Ko(4) — KO(X), Ko(4 ®g C) — K(X).

In fact, we prove more: There is a natural bijection between the set of
isomorphism classes of projective 4-modules of finite type and the set of
isomorphism classes of topological real vector bundles of finite rank over
X. The analogous statement with 4 ®x C and complex vector bundles also
holds (Corollary 1).

It was proved in [6] that, when X is a compact differentiable manifold,
one may take A equal to A(X), the ring of real algebraic functions on X,
which is defined by an arbitrary choice of algebraic embeddings of the
connected components of X into Euclidean spaces (in the sense of Nash
[7]). The ring A(X) is independent of the embeddings; but if one is only
interested in the isomorphisms (1) and one is not concerned about unique-
ness, then 4(X) may be replaced by some R-algebra essentially of finite type.
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In the general case of a finite CW-complex, however, one has to content
oneself with real analytic functions, and neither uniqueness nor finiteness
is obtained in this way.

2. Notations and preliminaries. Denote by @ the sheaf of real analytic
functions on R, and let, for any closed subset M of R", &/ (M)=T'(M, 0O)
be the ring of germs of real analytic functions on M.

A subset M of R" is called semianalytic, when every point x € M has an
open neighborhood U, in R™ such that MNU, is a finite union of finite
intersections of sets of the form

{yeU,|fi(;)) >0} or {yeU,]|f(y) =0},

where the f; are real analytic functions on U,. The following theorem was
proved by Frisch [3]:

ProposITION 1 (J. FrISCH). If M<R" is a compact semianalytic set,
then the ring ©7(M) is Noetherian.

We shall also need the following well-known results from algebraic
topology:

LeMMA 1. A finite, connected CW-complex of dimension n is homotopy
equivalent to some finite (connected) polyhedron P< R*"+1,

Any finite polyhedron P< R™ has a neighborhood N, such that P is a
strong deformation retract of N.

The first statement in this lemma is proved e.g. in Spanier [8, p. 120].
The neighborhood N in the second statement may be taken as a ‘““second
derived neighborhood of P”, as defined in Hudson [4, p. 50].

A finite polyhedron P< R™ is obviously a semianalytic compact set;
thus the ring 7 (P) is Noetherian by Proposition 1, but it is too large for
our purposes, so we replace it by the following homomorphic image:

PROPOSITION 2. Let P<R™ be a finite connected polyhedron in general
position and denote by ZB(P) the ring of (continuous) functions on P that are
locally restrictions to P of real analytic functions defined on open subsets of
R™. Then the natural restriction mapping res: &/ (P)—Z%(P) is surjective.

Proor. The polyhedron P is a finite union of convex polyhedrons
P,,: -, P,. Let E, denote the affine linear subspace of R™ spanned by P;,
and set E=E,U- - - UE,. We say that P is in general position, if there are
no inclusions between the E,’s. Then E is a closed coherent analytic sub-
space of R™, whence cohomologically trivial. The sheaf of real analytic
functions on F is written O,

Let f:P—R be a function in #(P), and denote the restriction of f to P;
by f;. The compact set P; is a convex body in E;, hence P, equals the closure



1973] VECTOR BUNDLES OVER FINITE CW-COMPLEXES 29

of its interior int P, in E,. Each point x € P, has an open neighborhood U,
in R™ such that f; equals g; , on U,NE,, for some g, , € I'(U,, 0), that is,
f: extends to a real analytic function on U, NE,. The union U, of the U, NE,,
x € P;, is an open neighborhood of P; in E,; therefore, since int P,NU,# &
for all x € P,, f; extends to an analytic function g; on U, by the property of
unique analytic prolongation. We may assume that every U, is the e-
neighborhood of P; for a fixed ¢>0, thus U,NE;=U;NE,. So U=U,V
+++UU, is an open subset of E, and g,, - ', g, define an element g€
I'(U, Og). Since R™ is cohomologically trivial, g is the restriction to U of a
real analytic function 4 defined over an open set V< R™ for which U=
VNE. This completes the proof, since 4 defines an element in Z/(P)
which, restricted to P, gives f.

The ring o/(P) is a regular, Noetherian ring of Krull-dimension m
(P<R™); see Langmann [5] for a general treatment of this type of ring.
Since P is Stein (i.e. P has a fundamental system of neighborhoods in C™
consisting of open Stein submanifolds of C™), P is homeomorphic to the
maximal spectrum Max(&Z(P)) of &/(P), endowed with the Zariski
topology. The kernel of the restriction map res:/(P)—~%(P) is the
Jacobson radical of 2/(P), so P is also homeomorphic to Max(%(P)).

PROPOSITION 3. In addition to the above notations, denote the topological
dimension of P by n. The Krull-dimension of %(P) equals n.

PrROOF. Set B=%#(P) ®g C, and denote the complexification of E; by
F;, i.e. F; is the complex affine subspace of C™ spanned by P;.

B is a finite étale extension of #(P), hence dim B=dim #(P). Since P
is Stein, every element of B may be extended (uniquely) to an element of
I'(UNF, O), where Uis some open neighborhood of P in C™, and 0 is the
sheaf of holomorphic functions on F. Therefore B=inj limy I'(UNF, OF),
where U ranges over all domains of holomorphy in C™ that contain B;
and I'(UNF, Oy) becomes a subring of B.

To every chain of prime ideals of finite length in B, one may find a U
such that the intersection with I'(UNF, Of) defines a chain of finitely
generated prime ideals in [(UNF, Of) of the same length. Since UNF is
defined by a finitely generated ideal in I'(U, 0p), UNF is a complex
Stein space, and the proposition now follows from:

LEMMA 2. Let X be a complex Stein space of dimension n. Then the
maximal length of a chain of finitely generated prime ideals in I'(X, O x) is n.

PrOOF. See [2].
3. Results.

THEOREM. Let P< R™ be a finite connected polyhedron in general position.
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Then there is a natural bijection between the isomorphism classes of pro-
Jective B(P)-modules (resp. B(P) @ g C-modules) of finite type and the
isomorphism classes of topological real (resp. complex) vector bundles over P
of finite rank.

Before giving the proof, we mention two corollaries.

COROLLARY 1. The analogue of the theorem holds with P replaced by a
finite CW-complex X, and %(P) replaced by some Noetherian subring A of
C°(X, R), which satisfies Krull-dim(4)=top dim(X).

PrOOF. A finite CW-complex X is locally connected, so the category
of topological vector bundles over X is the sum of the corresponding
categories for each connected component X; of X; and if a ring 4 is a
finite product of Noetherian rings 4;, then 4 is Noetherian, Krull-dim(4)=
max,{Krull-dim(4,)}, and the category of (finitely generated) projective
A-modules is the sum of the corresponding categories for each 4,. We may
therefore assume that X is connected, hence homotopy-equivalent to a
finite polyhedron P< R™—that clearly may be chosen in general position—
by Lemma 1, and the corollary follows from Theorem 2.

COROLLARY 2. One has isomorphisms
Ky (4) = KO(X), Ky(4 ® €)= K(X)
with X and A as in Corollary 1.

PrROOF. An immediate consequence of Corollary 1.

PrOOF OF THE THEOREM. The proof of the complex case is a trivial modi-
fication of the proof of the real case, so we confine ourselves to the latter.
Denote by & the sheaf induced on P=Max(Z(P)) from the affine scheme
Spec(#(P)). It was proved in [6, Lemma 3.2] that one has a bijection:

H(Spec(B(P)), GL,(Spec(#B(P)))) = H'(P, GL(#))

for all » € N. Furthermore, if € denotes the sheaf of real-valued continuous
functions on P and C=C°(P, R)=I'(P, ¥), one has a bijection

H'(Spec(C), GL,(Spec(C))) = H'(P, GL,(¥)).
Thus it suffices to prove that the inclusion #(P)< C induces a bijection
¢:H'(P, GL,(%)) = H'(P, GL,(%)).

The set H*(P, GL, (%)) may be identified with the set of homotopy
classes of continuous mappings from P into some real Grassmannian G,
and since every continuous mapping is homotopic to the restriction of a
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real analytic mapping defined in a neighborhood of P in R™ (see e.g.
[6, Lemma 3.1] with “Nash” replaced by ‘‘real analytic”), the mapping ¢
is surjective.

In order to prove the injectiveness of @, we must show that if two %-
vector bundles are topologically isomorphic then they are also P-iso-
morphic. The proof is reduced by standard arguments (see e.g. [6]) to
proving that any continuous section in a Z8-bundle over P may be arbi-
trarily well approximated by a Z-section. The latter is an easy application
of Weierstrass’ approximation theorem, as in [6, Proposition 4.5]. This
shows that ¢ is injective, and hence ends the proof of the theorem.

REMARK. The ring 4 obtained in Corollary 1 is not unique, as is seen
by the following example: Let X consist of two line segments having one
end in common. If one embeds X in R? as a straight line segment, A4
becomes an integral domain, but if one embeds X as an ‘““angle”, 4 is not
integral. It obviously does not help to shrink A to the ring of algebraic
functions, as one did in the case of a manifold.
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