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VECTOR  BUNDLES  OVER  FINITE
CW-COMPLEXES ARE ALGEBRAIC

KNUD   L0NSTED

Abstract. It is proved that for any finite CW-complex X there

exists a ring A of continuous functions on X, and natural 1-1 corre-

spondences between the finitely generated projective /1-modules

(resp. A ®R C-modules), and the topological real vector bundles

(resp. complex vector bundles) over X where A is Noetherian and

has Krull-dimension equal to the topological dimension of X.

1. Introduction. In Bass [1] the strong analogy, between the Grothen-

dieck group of topological vector bundles on a finite CW-complex and

the Grothendieck group of finitely generated projective modules over a

Noetherian ring of finite dimension, was emphasized. The aim of this

paper is to give a natural explanation of this analogy, by exhibiting for

each finite CW-complex X a Noetherian subring A of C°(X, R), the

Krull-dimension of which equals the topological dimension of X, and

such that the inclusion A<= C°(X, R) induces isomorphisms (Corollary 2),

(1) K0(A)^KO(X),        K0(A®RC)^K(X).

In fact, we prove more: There is a natural bijection between the set of

isomorphism classes of projective ^-modules of finite type and the set of

isomorphism classes of topological real vector bundles of finite rank over

X. The analogous statement with A ®R C and complex vector bundles also

holds (Corollary 1).

It was proved in [6] that, when X is a compact differentiable manifold,

one may take A equal to A (X), the ring of real algebraic functions on X,

which is defined by an arbitrary choice of algebraic embeddings of the

connected components of X into Euclidean spaces (in the sense of Nash

[7]). The ring A(X) is independent of the embeddings; but if one is only

interested in the isomorphisms (1) and one is not concerned about unique-

ness, then A (X) may be replaced by some Ä-algebra essentially of finite type.

Received by the editors May 1, 1972.

AMS (MOS) subject classifications (1970). Primary 13D15, 18F30, 55B15; Secondary
32C35.

Key words and phrases. Vector bundles, topological /^-theory, algebraic if-theory,

finite CW-complexes, real analytic functions.

© American Mathematical Society 1973

27



28 KNUD  L0NSTED [March

In the general case of a finite CW-complex, however, one has to content

oneself with real analytic functions, and neither uniqueness nor finiteness

is obtained in this way.

2. Notations and preliminaries. Denote by & the sheaf of real analytic

functions on R", and let, for any closed subset M of Rn, s/(M) = V(M, 0)

be the ring of germs of real analytic functions on M.

A subset M of Rn is called semianalytic, when every point x e M has an

open neighborhood Ux in Rn such that M(~\UX is a finite union of finite

intersections of sets of the form

{yeUx\f(y)>0}   or   {y e Ux\f(y) = 0},

where the/, are real analytic functions on Ux. The following theorem was

proved by Frisch [3] :

Proposition 1 (J. Frisch). If M<^Rn is a compact semianalytic set,

then the ring -s/(M) is Noetherian.

We shall also need the following well-known results from algebraic

topology:

Lemma 1. A finite, connected CW-complex of dimension n is homotopy

equivalent to some finite {connected) polyhedron P<^ R2n+1.

Any finite polyhedron P<-Rm has a neighborhood N, such that P is a

strong deformation retract of N.

The first statement in this lemma is proved e.g. in Spanier [8, p. 120].

The neighborhood N in the second statement may be taken as a "second

derived neighborhood of P", as defined in Hudson [4, p. 50].

A finite polyhedron P<-Rm is obviously a semianalytic compact set;

thus the ring sé(P) is Noetherian by Proposition 1, but it is too large for

our purposes, so we replace it by the following homomorphic image:

Proposition 2. Let P<-Rm be a finite connected polyhedron in general

position and denote by 3S(P) the ring of (continuous) functions on P that are

locally restrictions to P of real analytic functions defined on open subsets of

Rm. Then the natural restriction mapping res : stf (P)-+88(P) is surjective.

Proof. The polyhedron P is a finite union of convex polyhedrons

Pu ■ ■• ,PT. Let Ei denote the affine linear subspace of Rm spanned by Pt,

and set £=£1U- • • u£r. We say that P is in general position, if there are

no inclusions between the E¡s. Then £ is a closed coherent analytic sub-

space of Rm, whence cohomologically trivial. The sheaf of real analytic

functions on E is written 0B.

Let f:P-+R be a function in ¿S(P), and denote the restriction off to Pt

by f. The compact set P{ is a convex body in Et, hence Pt equals the closure
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of its interior int Pt in E(. Each point x eP¿ has an open neighborhood Ux

in Rm such that f i equals gUx on UxnE¿, for some gi¡x e T(UX, (9), that is,

f extends to a real analytic function on Ux n£¿. The union Ut of the Ux T\Et,

x ePt, is an open neighborhood ofP, in £,•; therefore, since int Pt r¡UX7¿0

for all x £ P¡,fi extends to an analytic function gt on Ut, by the property of

unique analytic prolongation. We may assume that every í/¿ is the e-

neighborhood of P{ for a fixed e>0, thus Í7ín£', = c/:,n£'¿. So U=*U-¿J

■ ■ -Uí/r is an open subset of E, and ^l5 • • ■ ,gr define an element g e

Y(U, &E). Since Rm is cohomologically trivial, g is the restriction to U of a

real analytic function h defined over an open set V^Rm for which U=

Vc\E. This completes the proof, since /; defines an element in <ß/(P)

which, restricted to P, gives/.

The ring s/(P) is a regular, Noetherian ring of Krull-dimension m

(P^Rm); see Langmann [5] for a general treatment of this type of ring.

Since P is Stein (i.e. P has a fundamental system of neighborhoods in Cm

consisting of open Stein submanifolds of Cm), P is homeomorphic to the

maximal spectrum Max(s/(P)) of s/(P), endowed with the Zariski

topology. The kernel of the restriction map res:ja/(P)—>£$(P) is the

Jacobson radical of sé{P~), so P is also homeomorphic to Max(ß(P)).

Proposition 3. In addition to the above notations, denote the topological

dimension of P by n. The Krull-dimension of 3§(P) equals n.

Proof. Set B=âS(P) ®R C, and denote the complexification of F, by

Fi, i.e. Fi is the complex affine subspace of C™ spanned by P{.

B is a finite étale extension of ¿M(P), hence dim B=dim SS{P). Since P

is Stein, every element of B may be extended (uniquely) to an element of

T(UC\F, &F), where Uis some open neighborhood ofP in Cm, and &F is the

sheaf of holomorphic functions on F. Therefore -ß=inj limy r([/nF, 0F),

where U ranges over all domains of holomorphy in Cm that contain B;

and Y(UC\F, 6F) becomes a subring of B.

To every chain of prime ideals of finite length in B, one may find a U

such that the intersection with r(t/nF, &F) defines a chain of finitely

generated prime ideals in r(i/nF", @F) of the same length. Since t/nF is

defined by a finitely generated ideal in T(U, &rj), UC\F is a complex

Stein space, and the proposition now follows from:

Lemma 2. Let X be a complex Stein space of dimension n. Then the

maximal length of a chain of finitely generated prime ideals in Y(X, &x) is n.

Proof.   See [2].

3. Results.

Theorem.   LetP^ Rm be a finite connected polyhedron in general position.
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77ze« there is a natural bijection between the isomorphism classes of pro-

jective ä6(P)-modules (resp. ¿i§(P) ®R C-modules) of finite type and the

isomorphism classes of topological real (resp. complex) vector bundles over P

of finite rank.

Before giving the proof, we mention two corollaries.

Corollary 1. The analogue of the theorem holds with P replaced by a

finite CW-complex X, and ¿%(P) replaced by some Noetherian subring A of

C°(X, R), which satisfies Krull-dim(/l)=top dimfX).

Proof. A finite CW-complex X is locally connected, so the category

of topological vector bundles over X is the sum of the corresponding

categories for each connected component Xt of X; and if a ring A is a

finite product of Noetherian rings At, then A is Noetherian, Krull-dimL4) =

maXjIKrull-dimL^i)}, and the category of (finitely generated) projective

/1-modules is the sum of the corresponding categories for each A{. We may

therefore assume that X is connected, hence homotopy-equivalent to a

finite polyhedron R<= Rm—that clearly may be chosen in general position—

by Lemma 1, and the corollary follows from Theorem 2.

Corollary 2.    Owe has isomorphisms

Ke(A) ̂  KO(X),        K0(A ®R C) =L K(X)

with X and A as in Corollary 1.

Proof.    An immediate consequence of Corollary 1.

Proof of the Theorem. The proof of the complex case is a trivial modi-

fication of the proof of the real case, so we confine ourselves to the latter.

Denote by @i the sheaf induced on P=Max(&(P)) from the affine scheme

Spec(á?(R)). It was proved in [6, Lemma 3.2] that one has a bijection:

tfHSpec(#(R)), GL„(Spec W)))) =*■ IP(P, GLn(J))

for all ne N. Furthermore, if <£ denotes the sheaf of real-valued continuous

functions on P and C=C°(P, R) = T(P, <€), one has a bijection

/¡"(SpeciC), GL„(Spec(C))) ̂  IP(P, GLn(tf)).

Thus it suffices to prove that the inclusion â$(P)<=C induces a bijection

r.H\P, GLn(S)) - H\P, GLB(*0).

The set i/^R, GLn(!g7)) may be identified with the set of homotopy

classes of continuous mappings from P into some real Grassmannian G,

and since every continuous mapping is homotopic to the restriction of a



1973] VECTOR   BUNDLES   OVER   FINITE   CW-COMPLEXES 31

real analytic mapping defined in a neighborhood of P in Rm (see e.g.

[6, Lemma 3.1] with "Nash" replaced by "real analytic"), the mapping <p

is surjective.

In order to prove the injectiveness of <p, we must show that if two 3ê-

vector bundles are topologically isomorphic then they are also .^-iso-

morphic. The proof is reduced by standard arguments (see e.g. [6]) to

proving that any continuous section in a áí'-bundle over P may be arbi-

trarily well approximated by a ^-section. The latter is an easy application

of Weierstrass' approximation theorem, as in [6, Proposition 4.5]. This

shows that q> is injective, and hence ends the proof of the theorem.

Remark. The ring A obtained in Corollary 1 is not unique, as is seen

by the following example: Let X consist of two line segments having one

end in common. If one embeds X in R2 as a straight line segment, A

becomes an integral domain, but if one embeds Xas an "angle", A is not

integral. It obviously does not help to shrink A to the ring of algebraic

functions, as one did in the case of a manifold.
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