VECTOR BUNDLES OVER FINITE CW-COMPLEXES ARE ALGEBRAIC

KNUD LØNSTED

ABSTRACT. It is proved that for any finite CW-complex X there exists a ring A of continuous functions on X, and natural 1-1 correspondences between the finitely generated projective A-modules (resp. $A \otimes_R C$ -modules), and the topological real vector bundles (resp. complex vector bundles) over X where A is Noetherian and has Krull-dimension equal to the topological dimension of X.

1. Introduction. In Bass [1] the strong analogy, between the Grothen-dieck group of topological vector bundles on a finite CW-complex and the Grothendieck group of finitely generated projective modules over a Noetherian ring of finite dimension, was emphasized. The aim of this paper is to give a natural explanation of this analogy, by exhibiting for each finite CW-complex X a Noetherian subring A of $C^{\circ}(X, \mathbf{R})$, the Krull-dimension of which equals the topological dimension of X, and such that the inclusion $A \subseteq C^{\circ}(X, \mathbf{R})$ induces isomorphisms (Corollary 2),

(1)
$$K_0(A) \to KO(X), \quad K_0(A \otimes_R C) \to K(X).$$

In fact, we prove more: There is a natural bijection between the set of isomorphism classes of projective A-modules of finite type and the set of isomorphism classes of topological real vector bundles of finite rank over X. The analogous statement with $A \otimes_R C$ and complex vector bundles also holds (Corollary 1).

It was proved in [6] that, when X is a compact differentiable manifold, one may take A equal to A(X), the ring of real algebraic functions on X, which is defined by an arbitrary choice of algebraic embeddings of the connected components of X into Euclidean spaces (in the sense of Nash [7]). The ring A(X) is independent of the embeddings; but if one is only interested in the isomorphisms (1) and one is not concerned about uniqueness, then A(X) may be replaced by some R-algebra essentially of finite type.

Received by the editors May 1, 1972.

AMS (MOS) subject classifications (1970). Primary 13D15, 18F30, 55B15; Secondary 32C35.

Key words and phrases. Vector bundles, topological K-theory, algebraic K-theory, finite CW-complexes, real analytic functions.

[©] American Mathematical Society 1973

In the general case of a finite CW-complex, however, one has to content oneself with real analytic functions, and neither uniqueness nor finiteness is obtained in this way.

2. Notations and preliminaries. Denote by \mathcal{O} the sheaf of real analytic functions on \mathbb{R}^n , and let, for any closed subset M of \mathbb{R}^n , $\mathscr{A}(M) = \Gamma(M, \mathcal{O})$ be the ring of germs of real analytic functions on M.

A subset M of \mathbb{R}^n is called *semianalytic*, when every point $x \in M$ has an open neighborhood U_x in \mathbb{R}^n such that $M \cap U_x$ is a finite union of finite intersections of sets of the form

$$\{y \in U_x | f_i(y) > 0\}$$
 or $\{y \in U_x | f_i(y) = 0\},$

where the f_j are real analytic functions on U_x . The following theorem was proved by Frisch [3]:

PROPOSITION 1 (J. FRISCH). If $M \subseteq \mathbb{R}^n$ is a compact semianalytic set, then the ring $\mathcal{A}(M)$ is Noetherian.

We shall also need the following well-known results from algebraic topology:

LEMMA 1. A finite, connected CW-complex of dimension n is homotopy equivalent to some finite (connected) polyhedron $P \subseteq \mathbb{R}^{2n+1}$.

Any finite polyhedron $P \subset \mathbb{R}^m$ has a neighborhood N, such that P is a strong deformation retract of N.

The first statement in this lemma is proved e.g. in Spanier [8, p. 120]. The neighborhood N in the second statement may be taken as a "second derived neighborhood of P", as defined in Hudson [4, p. 50].

A finite polyhedron $P \subset \mathbb{R}^m$ is obviously a semianalytic compact set; thus the ring $\mathscr{A}(P)$ is Noetherian by Proposition 1, but it is too large for our purposes, so we replace it by the following homomorphic image:

PROPOSITION 2. Let $P \subset \mathbb{R}^m$ be a finite connected polyhedron in general position and denote by $\mathcal{B}(P)$ the ring of (continuous) functions on P that are locally restrictions to P of real analytic functions defined on open subsets of \mathbb{R}^m . Then the natural restriction mapping res: $\mathcal{A}(P) \rightarrow \mathcal{B}(P)$ is surjective.

PROOF. The polyhedron P is a finite union of convex polyhedrons P_1, \dots, P_r . Let E_i denote the affine linear subspace of R^m spanned by P_i , and set $E = E_1 \cup \dots \cup E_r$. We say that P is in general position, if there are no inclusions between the E_i 's. Then E is a closed coherent analytic subspace of R^m , whence cohomologically trivial. The sheaf of real analytic functions on E is written \mathcal{O}_E .

Let $f: P \rightarrow R$ be a function in $\mathcal{B}(P)$, and denote the restriction of f to P_i by f_i . The compact set P_i is a convex body in E_i , hence P_i equals the closure

of its interior int P_i in E_i . Each point $x \in P_i$ has an open neighborhood U_x in R^m such that f_i equals $g_{i,x}$ on $U_x \cap E_i$, for some $g_{i,x} \in \Gamma(U_x, \emptyset)$, that is, f_i extends to a real analytic function on $U_x \cap E_i$. The union U_i of the $U_x \cap E_i$, $x \in P_i$, is an open neighborhood of P_i in E_i ; therefore, since int $P_i \cap U_x \neq \emptyset$ for all $x \in P_i$, f_i extends to an analytic function g_i on U_i , by the property of unique analytic prolongation. We may assume that every U_i is the ε -neighborhood of P_i for a fixed $\varepsilon > 0$, thus $U_i \cap E_i = U_i \cap E_i$. So $U = U_1 \cup \cdots \cup U_r$ is an open subset of E, and g_1, \cdots, g_r define an element $g \in \Gamma(U, \emptyset_E)$. Since R^m is cohomologically trivial, g is the restriction to U of a real analytic function h defined over an open set $V \subseteq R^m$ for which $U = V \cap E$. This completes the proof, since h defines an element in $\mathscr{A}(P)$ which, restricted to P, gives f.

The ring $\mathscr{A}(P)$ is a regular, Noetherian ring of Krull-dimension m $(P \subset \mathbb{R}^m)$; see Langmann [5] for a general treatment of this type of ring. Since P is Stein (i.e. P has a fundamental system of neighborhoods in \mathbb{C}^m consisting of open Stein submanifolds of \mathbb{C}^m), P is homeomorphic to the maximal spectrum $\operatorname{Max}(\mathscr{A}(P))$ of $\mathscr{A}(P)$, endowed with the Zariski topology. The kernel of the restriction map $\operatorname{res}:\mathscr{A}(P) \to \mathscr{B}(P)$ is the Jacobson radical of $\mathscr{A}(P)$, so P is also homeomorphic to $\operatorname{Max}(\mathscr{B}(P))$.

PROPOSITION 3. In addition to the above notations, denote the topological dimension of P by n. The Krull-dimension of $\mathcal{B}(P)$ equals n.

PROOF. Set $B=\mathcal{B}(P)\otimes_R C$, and denote the complexification of E_i by F_i , i.e. F_i is the complex affine subspace of C^m spanned by P_i .

B is a finite étale extension of $\mathcal{B}(P)$, hence dim $B = \dim \mathcal{B}(P)$. Since P is Stein, every element of B may be extended (uniquely) to an element of $\Gamma(U \cap F, \mathcal{O}_F)$, where U is some open neighborhood of P in \mathbb{C}^m , and \mathcal{O}_F is the sheaf of holomorphic functions on F. Therefore $B = \inf \lim_U \Gamma(U \cap F, \mathcal{O}_F)$, where U ranges over all domains of holomorphy in \mathbb{C}^m that contain B; and $\Gamma(U \cap F, \mathcal{O}_F)$ becomes a subring of B.

To every chain of prime ideals of finite length in B, one may find a U such that the intersection with $\Gamma(U \cap F, \mathcal{O}_F)$ defines a chain of finitely generated prime ideals in $\Gamma(U \cap F, \mathcal{O}_F)$ of the same length. Since $U \cap F$ is defined by a finitely generated ideal in $\Gamma(U, \mathcal{O}_U)$, $U \cap F$ is a complex Stein space, and the proposition now follows from:

LEMMA 2. Let X be a complex Stein space of dimension n. Then the maximal length of a chain of finitely generated prime ideals in $\Gamma(X, \mathcal{O}_X)$ is n.

Proof. See [2].

3. Results.

THEOREM. Let $P \subseteq \mathbb{R}^m$ be a finite connected polyhedron in general position.

Then there is a natural bijection between the isomorphism classes of projective $\mathcal{B}(P)$ -modules (resp. $\mathcal{B}(P) \otimes_R C$ -modules) of finite type and the isomorphism classes of topological real (resp. complex) vector bundles over P of finite rank.

Before giving the proof, we mention two corollaries.

COROLLARY 1. The analogue of the theorem holds with P replaced by a finite CW-complex X, and $\mathcal{B}(P)$ replaced by some Noetherian subring A of $C^{\circ}(X, \mathbf{R})$, which satisfies Krull-dim(A)=top dim(X).

PROOF. A finite CW-complex X is locally connected, so the category of topological vector bundles over X is the sum of the corresponding categories for each connected component X_i of X; and if a ring A is a finite product of Noetherian rings A_i , then A is Noetherian, Krull-dim(A) = $\max_i \{ \text{Krull-dim}(A_i) \}$, and the category of (finitely generated) projective A-modules is the sum of the corresponding categories for each A_i . We may therefore assume that X is connected, hence homotopy-equivalent to a finite polyhedron $P \subset \mathbb{R}^m$ —that clearly may be chosen in general position—by Lemma 1, and the corollary follows from Theorem 2.

COROLLARY 2. One has isomorphisms

$$K_0(A) \stackrel{\sim}{\to} KO(X), \qquad K_0(A \otimes_R C) \stackrel{\sim}{\to} K(X)$$

with X and A as in Corollary 1.

PROOF. An immediate consequence of Corollary 1.

PROOF OF THE THEOREM. The proof of the complex case is a trivial modification of the proof of the real case, so we confine ourselves to the latter. Denote by \mathcal{B} the sheaf induced on $P=\operatorname{Max}(\mathcal{B}(P))$ from the affine scheme $\operatorname{Spec}(\mathcal{B}(P))$. It was proved in [6, Lemma 3.2] that one has a bijection:

$$H^1(\operatorname{Spec}(\mathscr{B}(P)),\operatorname{GL}_n(\operatorname{Spec}(\mathscr{B}(P)))) \stackrel{\sim}{\to} H^1(P,\operatorname{GL}_n(\tilde{\mathscr{B}}))$$

for all $n \in N$. Furthermore, if \mathscr{C} denotes the sheaf of real-valued continuous functions on P and $C = C^{\circ}(P, R) = \Gamma(P, \mathscr{C})$, one has a bijection

$$H^1(\operatorname{Spec}(C), \operatorname{GL}_n(\operatorname{Spec}(C))) \cong H^1(P, \operatorname{GL}_n(\mathscr{C})).$$

Thus it suffices to prove that the inclusion $\mathcal{B}(P) \subset C$ induces a bijection

$$\varphi\!:\!H^1(P,\operatorname{GL}_n(\mathscr{B}))\stackrel{\sim}{\to} H^1(P,\operatorname{GL}_n(\mathscr{C})).$$

The set $H^1(P, \mathbf{GL}_n(\mathscr{C}))$ may be identified with the set of homotopy classes of continuous mappings from P into some real Grassmannian G, and since every continuous mapping is homotopic to the restriction of a

real analytic mapping defined in a neighborhood of P in \mathbb{R}^m (see e.g. [6, Lemma 3.1] with "Nash" replaced by "real analytic"), the mapping φ is surjective.

In order to prove the injectiveness of φ , we must show that if two \mathscr{B} -vector bundles are topologically isomorphic then they are also \mathscr{B} -isomorphic. The proof is reduced by standard arguments (see e.g. [6]) to proving that any continuous section in a \mathscr{B} -bundle over P may be arbitrarily well approximated by a \mathscr{B} -section. The latter is an easy application of Weierstrass' approximation theorem, as in [6, Proposition 4.5]. This shows that φ is injective, and hence ends the proof of the theorem.

REMARK. The ring A obtained in Corollary 1 is not unique, as is seen by the following example: Let X consist of two line segments having one end in common. If one embeds X in \mathbb{R}^2 as a straight line segment, A becomes an integral domain, but if one embeds X as an "angle", A is not integral. It obviously does not help to shrink A to the ring of algebraic functions, as one did in the case of a manifold.

REFERENCES

- 1. H. Bass, Algebraic K-theory, Benjamin, New York, 1968. MR 40 #2736.
- 2. O. Forster, Zur Theorie der Steinschen Algebren und Moduln, Math. Z. 97 (1967), 376-405. MR 35 #4469.
- 3. J. Frisch, Points de platitude d'un morphisme d'espaces analytiques complexes, Invent. Math. 4 (1967), 118-138. MR 36 #5388.
- 4. J. F. P. Hudson, *Piecewise linear topology*, Benjamin, New York, 1969. MR 40 #2094.
- 5. K. Langmann, Ringe holomorpher Funktionen und endliche Idealverteilungen, Schr. Math. Inst. Univ. Münster (2) 3 (1971).
- 6. K. Lønsted, An algebraization of vector bundles on compact manifolds, J. Pure Appl. Algebra 2 (1972), 193-207.
- 7. J. F. Nash, Jr., Real algebraic manifolds, Ann. of Math. (2) 56 (1952), 405-421. MR 14, 403.
 - 8. E. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007.

DEPARTMENT OF MATHEMATICS, UNIVERSITETSPARKEN 5, KØBENHAVN, DENMARK