IMBEDDING CLASSES AND n-MINIMAL COMPLEXES

BRIAN R. UMMEL¹

ABSTRACT. Algebraic and geometrical techniques are used to study examples (new and previously conjectured) of *n*-dimensional simplicial complexes which cannot be topologically imbedded in Euclidean 2*n*-space, but each proper subcomplex of any of them can be imbedded in Euclidean 2*n*-space.

- 1. **Introduction.** An n-minimal complex is an n-dimensional simplicial complex which is not imbeddable in R^{2n} but each of its proper subcomplexes is imbeddable in R^{2n} . In this note we study n-minimal complexes by combining the geometric approach of Grünbaum [2] and Zaks [7] with the algebraic approach of Wu [5]. The new results presented here include a suspension theorem for symmetric deleted products (Theorem 3.1), an affirmative answer to a conjecture of Zaks on the minimality of certain 2-complexes, and a new way of constructing minimal 2-complexes.
- 2. **Definitions.** By an n-complex we mean a topological space which carries the structure of a fixed n-dimensional simplicial triangulation. The deleted product of an n-complex K is defined to be

$$D_2(K) = \{(x_1, x_2) \in K \times K \mid x_1 \neq x_2\}.$$

The polyhedral deleted product of an n-complex K is defined to be

$$D'_2(K) = \{(x_1, x_2) \in K \times K \mid C_r(x_1) \cap C_r(x_2) = \emptyset \},$$

where $C_r(x)$ is the smallest closed simplex of K containing x. Let τ denote the self-homeomorphism of $D_2(K)$ or $D_2'(K)$ defined by $\tau(x_1, x_2) = (x_2, x_1)$; the antipodal map on the n-sphere S^n , $0 \le n \le \infty$, is also denoted by τ . The quotient spaces of $D_2(K)$, $D_2'(K)$, and S^n under the action of τ are denoted by $\Sigma_2(K)$, $\Sigma_2'(K)$, and P^n ($\Sigma_2(K)$ is called the symmetric deleted product of K). A function f between spaces of the form $D_2(K)$, $D_2'(K)$, or S^n is equivariant if $f \circ \tau = \tau \circ f$. For a finite n-complex K, $D_2'(K)$ is an

Received by the editors May 2, 1972.

AMS (MOS) subject classifications (1970). Primary 55A20, 57C35.

Key words and phrases. Imbedding, imbedding class, deleted product, n-minimal complex.

¹ Research supported by National Science Foundation Grant GP-29467.

equivariant deformation retract of $D_2(K)$ (cf. [5]), so $\Sigma'_2(K)$ is a deformation retract of $\Sigma_2(K)$. For any *n*-complex K there is a unique (up to equivariant homotopy) equivariant map $\bar{c}_K: D_2(K) \rightarrow S^{\infty}$ (cf. [3, Chapter 4]), the kth (mod 2)-imbedding class of K is defined by $\Phi_2^k(K) = c_K^*(w_k) \in$ $H^k(\Sigma_2(K); \mathbb{Z}_2)$ where w_k is the nonzero element of $H^k(P^{\infty}; \mathbb{Z}_2)$ and $c_K: \Sigma_2(K) \rightarrow P^{\infty}$ is the map induced by \bar{c}_x . If $f: K \rightarrow K'$ is an imbedding, denote by $D_2(f): D_2(K) \rightarrow D_2(K')$ the map given by $D_2(f)(x_1, x_2) =$ $(f(x_1), f(x_2)); D_2(f)$ is equivariant and induces $\Sigma_2(f): \Sigma_2(K) \to \Sigma_2(K')$. By the uniqueness of $\bar{c}_{K'}$, $\Sigma_2(f)^*(\Phi_2^k(K')) = \Phi_2^k(K)$. Since $D_2(R^n)$ is equivariantly homotopy equivalent to S^{n-1} , $\Phi_2^k(R^m) \neq 0$ iff $0 \leq k \leq m-1$; so $\Phi_2^m(K) \neq 0$ implies K cannot be imbedded in \mathbb{R}^m . Note also that $\Phi_2^k(S^m) \neq 0$ iff $0 \le k \le m$. The cone CK over an *n*-complex K is obtained from $K \times [0, 1]$ by identifying $K \times \{1\}$ to a point. The suspension SK of an *n*-complex K is obtained from $K \times [-1, 1]$ by identifying $K \times \{-1\}$ and $K \times \{+1\}$ to separate points. The join K * K' of two complexes K and K' is the quotient space of $K \times K' \times [0, 1]$ under the identifications of the form $(x_1, x_2, 0) \sim$ $(x_1, x_2', 0)$ or $(x_1, x_2, 1) \sim (x_1', x_2, 1)$. We endow CK, SK, and K * K' with the usual simplicial triangulations. We always use singular cohomology; the group of singular j-chains on K is denoted by $\Delta_j(K)$, and $\Delta(K)$ denotes the singular chain complex of K. Given $f: K \rightarrow K'$, $f_{\#}$ denotes the map induced on chains. The ring of integers mod 2 is denoted by Z_2 .

3. The suspension theorem. If K is a finite n-complex and $i \ge 0$, there is an isomorphism $\sigma_K \colon H^i(\Sigma_2(K); Z_2) \to H^{i+1}(\Sigma_2(SK); Z_2)$. If $f \colon K \to K'$ is an imbedding and $Sf \colon SK \to SK'$ is the suspension of f, then $\sigma_K \circ \Sigma_2(f)^* = \Sigma_2(Sf)^* \circ \sigma_{K'}$.

PROOF. Let G be the multiplicative group of order 2 with elements 1 and α , and let R be the integral group ring of G. We consider Z_2 a trivial R-module (i.e. $(m+n\alpha)x=(m+n)x$, $x\in Z_2$). $\Delta_j(D_2(K))$ has an R-module structure given by $(m+n\alpha)\cdot s=ms+n\tau_\#(s)$, $s\in \Delta_j(D_2(K))$. $\Delta_j(SD_2(K))$ has an R-module structure defined by $(m+n\alpha)s=ms+n\tau_\#(s)$ where $s\in \Delta_j(SD_2(K))$ and $\tau:SD_2(K)\to SD_2(K)$ is defined by $\tau([x_1,x_2,t])=[x_2,x_1,-t]$. Finally, $\Delta_j(CD_2(K))\oplus \Delta_j(CD_2(K))$ has an R-module structure given by $(m+n\alpha)\cdot (s_1,s_2)=m(s_1,s_2)+n(\tau_\#(s_2),\tau_\#(s_1))$ where $\tau:CD_2(K)\to CD_2(K)$ is defined by $\tau([x_1,x_2,t])=[x_2,x_1,t]$.

Define $\beta:\Delta_j(D_2(K))\to\Delta_j(CD_2(K))\oplus\Delta_j(CD_2(K))$ by $\beta(s)=(i_\#(s),i_\#(s))$ where $i:D_2(K)\to CD_2(K)$ is given by $i(x_1,x_2)=[x_1,x_2,0]$. Define $\gamma:\Delta_j(CD_2(K))\oplus\Delta_j(CD_2(K))\to\Delta_j(SD_2(K))$ by $\gamma(s_1,s_2)=j_{1\#}(s_1)-j_{2\#}(s_2)$ where, for $k=1,2,j_k:CD_2(K)\to SD_2(K)$ is given by $j_k([x_1,x_2,t])=[(x_1,x_2),(-1)^{k-1}t]$. Denoting the duals of β and γ by $\beta^\#$ and $\gamma_\#$, a straightforward verification and a standard excision argument show that we have a

short exact sequence of integral chain complexes

$$(*) \qquad \begin{array}{c} 0 \longrightarrow \operatorname{Hom}_R(\Delta(SD_2(K)); Z_2) \\ \xrightarrow{\gamma^{\#}} \operatorname{Hom}_R(\Delta(CD_2(K)) \oplus \Delta(CD_2(K)); Z_2) \\ \xrightarrow{\beta^{\#}} \operatorname{Hom}_R(\Delta(D_2(K)); Z_2) \longrightarrow 0. \end{array}$$

Hence there is a long exact sequence

$$\begin{array}{ccc}
& \longrightarrow & H^{k}(\operatorname{Hom}_{R}(\Delta(SD_{2}(K)); Z_{2})) \\
& \xrightarrow{\gamma^{*}} & H^{k}(\operatorname{Hom}_{R}(\Delta(CD_{2}(K)) \oplus \Delta(CD_{2}(K)); Z_{2})) \\
& \xrightarrow{\beta^{*}} & H^{k}(\operatorname{Hom}_{R}(\Delta(D_{2}(K)); Z_{2})) \\
& \xrightarrow{\sigma'} & H^{k+1}(\operatorname{Hom}_{R}(\Delta(SD_{2}(K)); Z_{2})) \longrightarrow & \cdots
\end{array}$$

Define $g: SD'_2(K) \to D'_2(SK)$ by $g([x_1, x_2, t]) = ([x_1, t], [x_2, -t])$. Then g is an equivariant homotopy equivalence (cf. [1]) with equivariant homotopy inverse $\tilde{g}: D'_2(SK) \to SD'_2(K)$ given by

$$\psi([x_1, t_1], [x_2, t_2]) = [x_1, x_2, t_1] \quad \text{if } t_1 \ge \max\{0, -t_2\} \text{ or } t_1 \le \min\{0, -t_2\},$$
$$= [x_1, x_2, -t_2] \quad \text{if } -t_2 \ge t_1 \ge 0 \text{ or } -t_2 \le t_1 \le 0.$$

Since the inclusions $D_2'(K) \rightarrow D_2(K)$ and $D_2'(SK) \rightarrow D_2'(SK)$ are equivariant homotopy equivalences, we have, from Proposition IV, 11.4, of [4], isomorphisms

$$\begin{split} \lambda_1 \colon & H^k(\operatorname{Hom}_R(\Delta(SD_2(K)); Z_2)) \cong H^k(\operatorname{Hom}_R(\Delta(D_2(SK)); Z_2)) \\ & \cong H^k(\Sigma_2(SK); Z_2), \\ \lambda_2 \colon & H^k(\operatorname{Hom}_R(\Delta(D_2(K)); Z_2)) \cong H^k(\Sigma_2(K); Z_2), \end{split}$$

and

$$\lambda_3$$
: $H^k(\operatorname{Hom}_R(\Delta(CD_2(K)) \oplus \Delta(CD_2(K)); Z_2)) \cong H^k(CD_2(K); Z_2)$.

Since $H^k(CD_2(K); Z_2)=0$ for k>0 and both $CD_2(K)$ and $\Sigma_2(SK)$ are connected,

$$\sigma_K = \lambda_1^{-1}\sigma' \circ \lambda_2 \colon H^k(\Sigma_2(K); Z_2) \to H^{k+1}(\Sigma_2(SK); Z_2)$$

is the desired isomorphism. The naturality of σ_K follows from the naturality of the short exact sequence (*), the naturality of the λ_i 's, and routine verifications.

3.1. COROLLARY. If K is a finite n-complex, then $\Phi_2^k(K)=0$ if and only if $\Phi_2^{k+1}(SK)=0$.

PROOF. Let $f: K \to S^{2n+1}$ be an imbedding. Since $\Phi_2^k(S^{2n+1})$ and $\Phi_2^{k+1}(S^{2n+2})$ are the unique nonzero elements of $H^k(\Sigma_2(S^{2n+1}); Z_2)$ and

 $H^{k+1}(\Sigma_2(S^{2n+2}); Z_2)$ we have $\sigma(\Phi_2^k(S^{2n+1})) = \Phi_2^{k+1}(S^{2n+2})$. So

$$\begin{split} \sigma(\Phi_2^k(K)) &= \sigma \cdot \Sigma_2(f)^*(\Phi_2^k(S^{2n+1})) = \Sigma_2(Sf)^* \circ \sigma(\Phi_2^k(S^{2n+1})) \\ &= \Sigma_2(Sf)^*(\Phi_2^k(S^{2n+2})) = \Phi_2^{k+1}(SK). \end{split}$$

The corollary follows, since σ is an isomorphism.

4. The classical *n*-minimal complexes. Let K_{2n+3}^n be the complete *n*-complex on 2n+3 vertices, i.e. the *n*-complex with 2n+3 vertices in which every set of n+1 vertices spans an *n*-simplex. Then any complex of the form

$$(**) K = K_{2n_1+3}^{n_1} * K_{2n_2+3}^{n_2} * \cdots * K_{2n_n+3}^{n_p}$$

is an *n*-minimal complex where $n=n_1+n_2+\cdots+n_p+p-1$ (cf. [2]). In this section we give a new proof that $\Phi_2^{2n}(K)\neq 0$ whenever K has form (**). Indeed Grünbaum proved in [2] that if K has the form (**) then "there is a homeomorphism between \hat{K} and S^{2n+1} which preserves antipodes". Converting this to our notation, Grünbaum's \hat{K} is exactly our $D_2'(CK)$ and his homeomorphism preserving antipodes give us an equivariant homeomorphism

$$\phi': D_2'(CK) \to S^{2n+1}$$

and hence an equivariant homotopy equivalence

$$\phi: D_2(CK) \to D_2(S^{2n+1}).$$

So, on quotient spaces, we have a homotopy equivalence

$$\psi\colon \Sigma_2(CK) \to \Sigma_2(S^{2n+1}).$$

Therefore $\Phi_2^{2n+1}(CK) = \psi^*(\Phi_2^{2n+1}(S^{2n+1})) \neq 0$. Since $CK \subseteq SK$, we have $\Phi_2^{2n+1}(SK) \neq 0$, and hence, by Corollary 3.1, $\Phi_2^{2n}(K) \neq 0$ as desired.

- 5. The *n*-minimal complexes of Zaks. In [7], Zaks proved the existence, for each $n \ge 2$, of infinitely many mutually nonhomeomorphic *n*-minimal complexes. He was able to give explicit examples for n > 2, but for n = 2 a slight indeterminacy remained. In this section we remove that indeterminacy (exactly as Zaks conjectured it would be removed). Our main tool is
- 5.1. THEOREM. Suppose K and K' are complexes and $\Phi_2^j(K) \neq 0$. If there is a continuous function $f: K \rightarrow K'$ such that for each $x \in K'$, $f^{-1}(x)$ is contained in a closed simplex of K, then $\Phi_2^j(K') \neq 0$.
- PROOF. Define $\phi_f: D_2'(K) \to D_2(K')$ by $\phi_f(x_1, x_2) = (f(x_1), f(x_2))$. Let r be an equivariant retraction of $D_2(K)$ onto $D_2'(K)$, and $\lambda: \Sigma_2(K) \to \Sigma_2(K')$ be the map induced on quotient spaces by $\phi_f \circ r: D_2(K) \to D_2(K')$. Then $\lambda^*(\Phi_2^j(K')) = \Phi_2^j(K) \neq 0$. So $\Phi_2^j(K') \neq 0$.

- 5.2. Modified Zaks construction. Consider the sequence of 2-complexes X_0, X_1, X_2, \cdots , where $X_0 = K_7^2$ and X_j is constructed from X_{j-1} as follows: let x_j and y_i be distinct points in the interior of the same 2-simplex of X_{j-1} ; subdivide X_{j-1} so that x_j and y_j are nonadjacent vertices of the new triangulation; then X_j is the quotient complex of X_{j-1} obtained by identifying x_j and y_j . Applying Theorem 5.1 to the natural projection map $p_j: X_{j-1} \rightarrow X_j$ we have $\Phi_2^4(X_j) \neq 0$, and so X_j is not imbeddable in R^4 , for each $j \geq 0$. Zak's argument now completes the proof that X_j is in fact 2-minimal. Since X_j has exactly j local cut-points, X_i and X_j are not homeomorphic if $i \neq j$.
- 6. More 2-minimal complexes. In this section we describe a simple procedure for constructing many new 2-minimal complexes. The procedure can be adapted to one for constructing n-minimal complexes for n > 2. Our examples show that the collection of 2-minimal complexes is not nearly exhausted by repeatedly applying Zaks construction to one of the complexes K_7^2 , $K_5^1 * K_3^0$, or $K_3^0 * K_3^0 * K_3^0$. Let T be a tree (finite contractible 1-complex) and f_1 , f_2 be simplicial imbeddings of T into a subdivision of $K=K_7^2$ such that $f_1(T) \cap f_2(T) = \emptyset$ and $f_1(T) \cup f_2(T)$ is a subset of the interior of a 2-simplex of the original triangulation of K. Let L be the quotient complex obtained by identifying $f_1(t)$ with $f_2(t)$ for each $t \in T$. By Theorem 5.1, $\Phi_2^4(L) \neq 0$, so L is not imbeddable in \mathbb{R}^4 . To show that L is 2-minimal, let Δ be a 2-simplex of L. Then Δ is a 2-simplex of K and it suffices to consider the case $\Delta \cap (f_1(T) \cup f_2(T)) = \emptyset$. Set $K' = K - \text{int } \Delta$ and $L' = L - \text{int } \Delta$, and let $i: K' \rightarrow R^4$ be a piecewise linear imbedding (cf. [6]). We take R^4 to be the space of quadruples (x_1, x_2, x_3, x_4) . By a deformation of K' we can assume there is a 2-simplex S of the subdivided K' and 2-disks D_1 and D_2 in the interior of S such that $f_i(T) \subseteq D_i$, i=1, 2, ...and i is linear on S. We now alter i so that i(S) is contained in the $x_4=0$ hyperplane of R^4 . Now alter i again so that

$$i(D_1) = \{(x_1, x_2, 0, 0) \in R^4 \mid x_1^2 + x_2^2 = 1\},$$

$$i(D_2) = \{(x_1, x_2, 0, 1) \in R^4 \mid x_1^2 + x_2^2 = 1\},$$

and

$$\{(x_1, x_2, x_3, x_4) \mid x_1^2 + x_2^2 + x_3^2 = 1, 0 \le x_4 \le 1\} = i(D_1) \cup i(D_2).$$

Now assume T is a subcomplex of the standard 3-ball D^3 . Since any two piecewise linear imbeddings of a tree in R^3 are ambiently isotopic, there is an imbedding $h: D^3 \times [0, 1] \rightarrow R^4$ such that $\pi_4 h(x_1, x_2, x_3, s) = s$ where $\pi_4(x_1, x_2, x_3, x_4) = x_4$;

$$h(x_1, x_2, x_3, s) = (x_1, x_2, x_3, s)$$

206 B. R. UMMEL

if
$$x_1^2 + x_2^2 + x_3^2 = 1$$
, $0 \le s \le 1$;

$$h(t, 0) = i \circ f_1(t)$$
 if $t \in T$;

and

$$h(t, 1) = i \circ f_2(t)$$
 if $t \in T$.

Let $g: D^3 \rightarrow [0, 1]$ be a piecewise linear map such that $g(x_1, x_2, x_3) = 0$ iff $(x_1, x_2, x_3) \in T$ and $g(x_1, x_2, x_3) = 1$ iff $x_1^2 + x_2^2 + x_3^2 = 1$. Define $k: D_2 \rightarrow D^3$ by $k(x) = \pi_1 \circ h^{-1} \circ i(x)$ where $\pi_1: D_3 \times [0, 1] \rightarrow D^3$ is the projection. Finally define $j: K' \rightarrow R^4$ by

$$j(x) = i(x) \qquad \text{if } x \in K' - \text{int } D_2,$$

= $h(K(x), g(K(x)))$ if $x \in D_2$.

It is easily verified that j induces an imbedding of L' in R^4 , and our proof that L is 2-minimal is complete. L is distinct from any result of the Zaks construction since L has no local cut-points, and L is distinct from the classical 2-minimal complexes since L is not simply connected. By choosing T to be very complicated and iterating the above process, 2-minimal complexes of great complexity can be constructed.

REFERENCES

- 1. A. H. Copeland, Jr., Deleted products with prescribed homotopy types, Proc. Amer. Math. Soc. 19 (1968), 1109–1114. MR 38 #710.
- 2. Branko Grünbaum, *Imbeddings of simplicial complexes*, Comment. Math. Helv. 44 (1969), 502-513. MR 40 #8058.
 - 3. Dale Husemoller, Fibre bundles, McGraw-Hill, New York, 1966. MR 37 #4821.
- 4. Saunders Mac Lane, *Homology*, Die Grundlehren der math. Wissenschaften, Band 114, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #122.
- 5. W. T. Wu, A theory of imbedding, immersion, and isotopy of polytopes in a euclidean space, Science Press, Peking, 1965. MR 35 #6146.
- 6. Joseph Zaks, On a minimality property of complexes, Proc. Amer. Math. Soc. 20 (1969), 439-444. MR 39 #946.
 - 7. ——, On minimal complexes, Pacific J. Math. 28 (1969), 721-727. MR 39 #4854.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MILWAUKEE, WISCONSIN 53201