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IMBEDDING CLASSES AND »-MINIMAL COMPLEXES

BRIAN R. UMMEL!

ABSTRACT. Algebraic and geometrical techniques are used to
study examples (new and previously conjectured) of n-dimensional
simplicial complexes which cannot be topologically imbedded in
Euclidean 2n-space, but each proper subcomplex of any of them can
be imbedded in Euclidean 2n-space.

1. Introduction. An n-minimal complex is an n-dimensional simplicial
complex which is not imbeddable in R®** but each of its proper sub-
complexes is imbeddable in R?". In this note we study n-minimal complexes
by combining the geometric approach of Griinbaum [2] and Zaks [7] with
the algebraic approach of Wu [5]. The new results presented here include
a suspension theorem for symmetric deleted products (Theorem 3.1), an
affirmative answer to a conjecture of Zaks on the minimality of certain 2-
complexes, and a new way of constructing minimal 2-complexes.

2. Definitions. By an n-complex we mean a topological space which
carries the structure of a fixed n-dimensional simplicial triangulation. The
deleted product of an n-complex K is defined to be

Dy(K) = {(x1, x;) € K X KI Xy # X}
The polyhedral deleted product of an n-complex K is defined to be
Dy(K) = {(x1, X3) € K X K| C(x,) N Cylx,) = 31},

where C,(x) is the smallest closed simplex of K containing x. Let 7 denote
the self-homeomorphism of D,(K) or Dy(K) defined by 7(x;, x,)=
(x,, x,); the antipodal map on the n-sphere S", 0=n= o, is also denoted
by 7. The quotient spaces of D,(K), D;(K), and S™ under the action of 7
are denoted by Z,(K), Z3(K), and P (Z,(K) is called the symmetric de-
leted product of K). A function f between spaces of the form D,(K), D3(K),
or S™ is equivariant if fo r=7 o f. For a finite n-complex K, D3(K) is an
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equivariant deformation retract of Dy(K) (cf. [5]), so Z3(K) is a defor-
mation retract of X,(K). For any n-complex K there is a unique (up to
equivariant homotopy) equivariant map ¢x: Do(K)—>S® (cf. [3, Chapter
4)), the kth (mod 2)-imbedding class of K is defined by ®(K)=cx(w;) €
H*(Z,(K); Z,) where w, is the nonzero element of H*(P*;Z,) and
¢ 25(K)—P% is the map induced by ¢,. If f:K—K' is an imbedding,
denote by D,(f):Dy(K)—Dy(K’) the map given by D,(f)(x;, x,)=
(f (x1), f(x)); Dy(f) is equivariant and induces Z,(f): Zy(K)—Zy(K'). By
the uniqueness of ¢z, Zy(f)*(P5(K")=D5(K). Since D,y(R") is equi-
variantly homotopy equivalent to S, ®5(R™)#0 iff 0=k=<m—1; so
@7 (K)#0 implies K cannot be imbedded in R™. Note also that ®5(S™)#0
iff 0=k =<m. The cone CK over an n-complex K is obtained from Kx [0, 1]
by identifying Kx {1} to a point. The suspension SK of an n-complex K is
obtained from Kx[—1, 1] by identifying Kx{—1} and Kx{+1} to
separate points. The join K * K’ of two complexes K and K’ is the quotient
space of Kx K’ x [0, 1] under the identifications of the form (x;, x,, 0)~
(x,1, X3, 0) or (xq, X, 1)~(x7, X,, 1). We endow CK, SK, and K * K’ with
the usual simplicial triangulations. We always use singular cohomology;
the group of singular j-chains on K is denoted by A;(K), and A(K) denotes
the singular chain complex of K. Given f:K—K’, f, denotes the map in-
duced on chains. The ring of integers mod 2 is denoted by Z,.

3. The suspension theorem. If K is a finite n-complex and i Z0, there is
an isomorphism ox: H(Z,(K); Zy)—>H"(Z,(SK); Z,). If f:K—K' is an
zmbeddmg and Sf:SK—SK' is the suspension of [, then og o Zo(f)*=

S(Sf)* o o

ProoOF. Let G be the multiplicative group of order 2 with elements 1
and «, and let R be the integral group ring of G. We consider Z, a trivial
R-module (i.e. (m+nw)x=(m-+n)x, x € Z,). A;(D;(K)) has an R-module
structure given by (m+na) - s=ms+nty(s), s € A;(Dy(K)). A;(SDy(K))
has an R-module structure defined by (m+-na)s=ms+nry(s) where
s € A{(SDy(K)) and 7:SD,(K)—>SDy(K) is defined by 7([x;, x,, t])=
[x,, x;, —t]. Finally, A;(CDy(K))®A,;(CD,y(K)) has an R-module structure
given by (m+na) « (s, S5)=m(sy, S2)+n(74(s), T4(s1)) where 7: CD,(K)—
CD,(K) is defined by 7([x,, x,, t])=[x,, x;, t].

Define f:4;(Dy(K))—A;(CDo(K)DA,(CD,(K)) by B(s)={(iy(s), ix(s))
where i Dy(K)—>CDy(K) is given by i(x;, x,)=1[x, Xz, 0]. Define
7:8,(CDy(K)DA;(CDy(K))—>A,(SDy(K)) by  y(s1, S2) =j1#(51) —Jau(S2)
where, for k=1, 2, j,:CDy(K)—>SD,(K) is given by j.([x1, Xz, t])=
[(x1, X5), (—1)*-¢]. Denoting the duals of 8 and y by # and ¥ 4» a straight-
forward verification and a standard excision argument show that we have a
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short exact sequence of integral chain complexes

0 —> Hompz(A(SDy(K)); Z,)
() 22> Homy(A(CDy(K) ® M(CDA(K)); Z)
B Homp(A(DK)); Z) —> .

Hence there is a long exact sequence

© —> H*(Homg(A(S Dy(K)); Z5))
£ 3
%7 H*(Homx(A(CDy(K)) @ A(CD,(K)); Z5))
~— H(Hompg(A(Dy(K)); Z,))
9y H*' (Homg(A(SDy(K)); Zy)) —> * - - .
Define g:SD3(K)—Dy(SK) by g([x1, X, t])=([xy, ], [xz, —1]). Then g is
an equivariant homotopy equivalence (cf. [1]) with equivariant homotopy
inverse §: Dy(SK)—SD,(K) given by
p([x1, 1], [xe, t2]) = [X1, X, 2] if t; Z max{0, —2,} or #; = min{0, — 15},
=[x, X3, —=1)] f =, Z1,Z00r -, =1, =0.
Since the inclusions Dy(K)— Dy(K) and D;(SK)— D3(SK) are equivariant
homotopy equivalences, we have, from Proposition IV, 11.4, of [4],
isomorphisms

Ay H¥(Homp(A(SDy(K)); Z,)) == H*(Homp(A(Dy(SK)); Z))
>~ H*(Zy(SK); Z,),
Ay: H*(Homp(A(Dy(K)); Z5)) == H*(Z4(K); Z,),
and
Ag: H¥(Homp(A(CDy(K)) ® A(CDy(K)); Zy)) = H*(CDy(K); Z,).

Since H¥*(CD,(K); Z,)=0 for k>0 and both CD,(K) and Z,(SK) are
connected,

O = M0 0 Ay H'(Zy(K); Z,) — H*(Zy(SK); Z,)
is the desired isomorphism. The naturality of o follows from the natural-

ity of the short exact sequence (*), the naturality of the 4;’s, and routine
verifications.

3.1. CorROLLARY. If K is a finite n-complex, then ®3(K)=0 if and only
if 5 (SK)=0.

PROOF. Let f:K—>S?tl be an imbedding. Since ®5(S***!) and
@k (S27+2) are the unique nonzero elements of H*(Z,(S?"*1); Z,) and
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H¥1(Z,(52%+2); Z,) we have o(D5(S2"1))=05(52+2). So

S(DLK)) = 0 - Sy(/)(DEST)) = To(Sf)* o o(DUSEHY))
= Z,(Sf)*(D5(S**1?)) = DET(SK).

The corollary follows, since ¢ is an isomorphism.

4. The classical n-minimal complexes. Let K;,.; be the complete n-
complex on 2n4-3 vertices, i.e. the n-complex with 2n+3 vertices in which
every set of n4-1 vertices spans an #-simplex. Then any complex of the form

— ni ne . e ny
(*%) K = K33 13 % K3pyy3 % * Kyn,ia

is an n-minimal complex where n=n;+n,+- - +n,+p—1 (cf. [2]). In
this section we give a new proof that ®3"(K)5£0 whenever K has form (**).
Indeed Griinbaum proved in [2] that if K has the form (**) then “there is
a homeomorphism between K and $2*+ which preserves antipodes”. Con-
verting this to our notation, Griinbaum’s K is exactly our Dj(CK) and his
homeomorphism preserving antipodes give us an equivariant homeo-
morphism

¢': Dy(CK) — S**+
and hence an equivariant homotopy equivalence

¢: Dy(CK) — Dy(S*"*).
So, on quotient spaces, we have a homotopy equivalence

1 Zy(CK) — Zp(S2mH).

Therefore @3 (CK)=y* (D" (S2"+1))0. Since CK<SK, we have
@3 (SK)#0, and hence, by Corollary 3.1, ®3"(K)#0 as desired.

5. The n-minimal complexes of Zaks. In [7], Zaks proved the existence,
for each n=2, of infinitely many mutually nonhomeomorphic #-minimal
complexes. He was able to give explicit examples for n>2, but for n=2a
slight indeterminacy remained. In this section we remove that indeter-
minacy (exactly as Zaks conjectured it would be removed). Our main tool
is

5.1. THEOREM. Suppose K and K’ are complexes and ®y(K)#0. If there
is a continuous function f:K—K' such that for each x € K’, f~(x) is con-
tained in a closed simplex of K, then ®3(K')#O0.

ProoF. Define ¢,: Dy(K)—Dy(K') by é,(x1, x5)=(f(x1), f(x5)). Let r
be an equivariant retraction of D,(K) onto Dy(K), and 1: Z,(K)—2,(K’) be
the map induced on quotient spaces by ¢, o r:Dy(K)—Dy(K’). Then
A*(@Y(K"))=Di(K)50. So PL(K") 0.
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5.2. Modified Zaks construction. Consider the sequence of 2-complexes
Xo, X1, X,, - -+, where X,=K’ and X; is constructed from X,_, as follows:
let x; and y; be distinct points in the interior of the same 2-simplex of
X;_,; subdivide X;_; so that x; and y; are nonadjacent vertices of the new
triangulation; then X; is the quotient complex of X;_, obtained by identi-
fying x; and y;. Applying Theorem 5.1 to the natural projection map
P;: X;_1—>X; we have ®3(X,)50, and so X, is not imbeddable in R%, for
each j=0. Zak’s argument now completes the proof that X; is in fact 2-
minimal. Since X has exactly j local cut-points, X; and X are not homeo-

morphic if i%;].

6. More 2-minimal complexes. In this section we describe a simple
procedure for constructing many new 2-minimal complexes. The pro-
cedure can be adapted to one for constructing #-minimal complexes for
n>2. Our examples show that the collection of 2-minimal complexes is not
nearly exhausted by repeatedly applying Zaks construction to one of the
complexes K3, K * K3, or K3 * K3 x K3. Let T be a tree (finite contractible
1-complex) and f;, f, be simplicial imbeddings of T into a subdivision of
K=K? such that [N f(T)=2 and fi(T)V f,(T) is a subset of the
interior of a 2-simplex of the original triangulation of K. Let L be the
quotient complex obtained by identifying f; (t) with f,(¢) for each ¢t € T. By
Theorem 5.1, ®3(L)#0, so L is not imbeddable in R%. To show that L is
2-minimal, let A be a 2-simplex of L. Then A is a 2-simplex of K and it
suffices to consider the case AN (fi(T) U fo(T))=2. Set K'=K—int A
and L'=L—int A, and let i:K'—R* be a piecewise linear imbedding (cf.
[6]). We take R* to be the space of quadruples (x;, x,, x3, X4). By a
deformation of K’ we can assume there is a 2-simplex S of the subdivided
K' and 2-disks D, and D, in the interior of S such that f,(T)< D,, i=1, 2,
and i is linear on S. We now alter / so that i(S) is contained in the x,=0
hyperplane of R* Now alter i again so that

i(Dy) = {(xy, x5, 0,0) € R* | x} + x} = 1},
i(Dg) = {(x1, X2, 0, 1) e R* | x} + x} = 1},
and
{(x1, X3, X5, Xg) | x] + x5 + x5 = 1,0 = x, S 1} = i(D,y) U i(Dy).

Now assume T is a subcomplex of the standard 3-ball D3, Since any two
piecewise linear imbeddings of a tree in R® are ambiently isotopic, there
is an imbedding h: D3x [0, 1]—R* such that mh(x,, x,, x5, s)=s where
7y(X1, Xa, X3, X4) =Xy

h(xy, X3, X3, 8) = (X1, X3, X3, S)
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if X34x24xi=1, 0<s=Z1;

h(t,0) =iofi(t) ifteT;
and

h(t,1) =iofy(t) ifteT

Let g: D3—[0, 1] be a piecewise linear map such that g(x;, x,, x3)=0 iff
(%1, Xz, X3) € T and g(xy, X, X3)=1iff x}+x3+x5=1. Define k: D,—D? by
k(x)=1m, o h™Y o i(x) where m;: D3x [0, 1]—-D? is the projection. Finally
define j: K'—R* by
Jj(x) = i(x) if xe K’ — int D,,
= h(K(x), g(K(x))) if x € D,.

It is easily verified that j induces an imbedding of L’ in R?, and our proof
that L is 2-minimal is complete. L is distinct from any result of the Zaks
construction since L has no local cut-points, and L is distinct from the
classical 2-minimal complexes since L is not simply connected. By choosing
T to be very complicated and iterating the above process, 2-minimal
complexes of great complexity can be constructed.
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