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IMBEDDING  CLASSES  AND  «-MINIMAL  COMPLEXES

BRIAN   R.   UMMEL1

Abstract. Algebraic and geometrical techniques are used to

study examples (new and previously conjectured) of «-dimensional

simplicial complexes which cannot be topologically imbedded in

Euclidean 2«-space, but each proper subcomplex of any of them can

be imbedded in Euclidean 2«-space.

1. Introduction. An «-minimal complex is an «-dimensional simplicial

complex which is not imbeddable in R2n but each of its proper sub-

complexes is imbeddable in R2n. In this note we study «-minimal complexes

by combining the geometric approach of Grünbaum [2] and Zaks [7] with

the algebraic approach of Wu [5]. The new results presented here include

a suspension theorem for symmetric deleted products (Theorem 3.1), an

affirmative answer to a conjecture of Zaks on the minimality of certain 2-

complexes, and a new way of constructing minimal 2-complexes.

2. Definitions. By an «-complex we mean a topological space which

carries the structure of a fixed «-dimensional simplicial triangulation. The

deleted product of an «-complex K is defined to be

D2(K) = {fo, x2) e K x A: I Xl * x2}.

The polyhedral deleted product of an «-complex K is defined to be

D2(K) = {fe x2)eKx K\ Cr(xJ n Cr(x2) =0},

where Cr(x) is the smallest closed simplex of K containing x. Let t denote

the self-homeomorphism of D2(K) or D'2(K) defined by r(x1, x2) =

(x2, x-i); the antipodal map on the «-sphere Sn, 0^«5=oo, is also denoted

by r. The quotient spaces of D2(K), D'2(K), and Sn under the action of t

are denoted by £a(AT), £á(AT), and Pn (22(X) is called the symmetric de-

leted product of K). A function/ between spaces of the form D2{K), D'2(K),

or Sn is equivariant if/° t = t °fi For a finite «-complex K, D'2(K) is an
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equivariant deformation retract of D2{K) (cf. [5]), so 22(A") is a defor-

mation retract of £2(AT). For any «-complex K there is a unique (up to

equivariant homotopy) equivariant map cK:D2(K)->Sco (cf. [3, Chapter

4]), the kth (mod 2)-imbedding class of K is defined by ®t(K)=cK(w¿) e

Hk(Z2(K);Z2) where wk is the nonzero element of //'"(P00 ; Z2) and

cK:'Li[K)-+P'" is the map induced by cx. If f:K—>-K' is an imbedding,

denote by D2(f):D2(K)^-D2(K') the map given by D2(f)(x1, x2) =

(f(xi),f(x2))'r D2(f) is equivariant and induces 22(/):X2(A")—>-22(A"). By

the uniqueness of cK>, I,2(f)*(^Í(K')) = (S>Í(K). Since D2(Rn) is equi-

variantly homotopy equivalent to S"-1, O2(Äm)^0 iff O^k^m— 1; so

O^A^O implies AT cannot be imbedded in Rm. Note also that ®l(Sm)?¿0

iïïO^k-^m. The cone CATover an «-complex Kis obtained from Kx [0, 1]

by identifying Kx {1} to a point. The suspension SK of an «-complex K is

obtained from Kx[—1,1] by identifying ATx{— 1} and A"x{+1} to

separate points. The join K * A" of two complexes AT and A" is the quotient

space of KxK'x [0, 1] under the identifications of the form (x1? x2, 0)~

(xls x2) 0) or (xu x2, l)-~(xi, x2, 1). We endow CAT, SA", and K * K' with

the usual simplicial triangulations. We always use singular cohomology;

the group of singulary'-chains on A" is denoted by A3(A"), and A(A") denotes

the singular chain complex of K. Given f:K-^-K',f# denotes the map in-

duced on chains. The ring of integers mod 2 is denoted by Z2.

3. The suspension theorem. If K is a finite n-complex and ¡^0, there is

an isomorphism o-x://i(22(A');22)^//i+1(22(S'A-); Z2). Iff.K^K' is an

imbedding and Sf:SK—*SK' is the suspension off, then aK ° 22(/)* =

S2(S/)* • oK-

Proof. Let G be the multiplicative group of order 2 with elements 1

and a, and let R be the integral group ring of G. We consider Z2 a trivial

^-module (i.e. (m+na)x=(m+n)x, x eZ2). \}(D2(K)) has an .R-module

structure given by (m+nx) ■ s=ms+nr#(s), s e A3(D2(AT)). A}(SD2(K))

has an A^-module structure defined by {m+nct.)s=ms+nr#{s) where

s 6 A}(SD2(K)) and t:SD2(K)^SD2(K) is defined by t([xu x2, t]) =

[x2, xu —t]. Finally, AJ(CZ)2(A"))©AJ(CZ)2(A')) has an Ä-module structure

given by (m+nct.) • (su s2)=m(s1, s2)+n(r#(s2), t#(sJ) where t:CD2(K)^

CD2(K) is defined by T([xlt x2, t])—[x2, xu t].

Define ^A^^AlKiCA^eA^AW) by ß(s)=(i#(s),i#(s))
where i: D2(K)->-CD2(K) is given by i(x1, x2)=[x1, x2,0]. Define

y:AJ(CZ)2(A-))©Aj(CZ)2(A))^Ai(5Z)2(A-)) by y(slt s^f^sj-j^sj

where, for £=1,2, jk:CD2(K)~>SD2{K) is given by jk([xu x2, i]) =

[(xu x2), (— l)*-1/]. Denoting the duals of ß and y by ß# and y#, a straight-

forward verification and a standard excision argument show that we have a
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short exact sequence of integral chain complexes

0 —► HomR(A(SD2(K));Z2)

(*) ^ HomR(A(CD2(K)) © A(CD2(K)) ; Z2)

P*> HomR(A(D2(K));Z2) —> 0.

Hence there is a long exact sequence

ß*

—> Hk(HomR(A(SD2(K));Z2))

Hk(HomR(A(CD2(K)) © A(CD2(K)); Z2))

Hk(HomR(A(D2(K));Z2))

Hk+1(HomR(A(SD2(K)); Z2)) —►••■.

Define g:SZ)2(/rF-Z)2(S/0 by g([^, x„ f])=([*i, t], [x2, -t]). Then g is

an equivariant homotopy equivalence (cf. [1]) with equivariant homotopy

inverse g:D'2(SK)~+SD2(K) given by

V([*i> 'il. [*2, y) = [*i, *2, ill    if <i ̂  max{0, -ig} or f, < min{0, -f2},

= [jcj, x2, -t2]   if -r2 ^(i^Oor -r2 < íi ^ 0.

Since the inclusions D'2(K)^D2(K) and D2(SK)-+D'2(SK) are equivariant

homotopy equivalences, we have, from Proposition IV, 11.4, of [4],

isomorphisms

Xl : Hk(HomR(A(SD2(K)) ; Z2)) a* Hk(HomR(A(D2(SK)) ; Z2))

l2:Hk(HomR(A(D2(K)); Z2)) 3* Hk(Z2(K); Z2),

and

V/7*(HomB(A(Cfl8(A:)) © A(CZ>S(K)); Z»)) s H'(CD2(K);Z2).

Since 7/fc(CZ)2(/O;Z2) = 0 for A:>0 and both CD2(K) and S,(£K) are

connected,

aK = ArV o X2:HkÇZ2(K); Z2) - //^(Z^SK); Z2)

is the desired isomorphism. The naturality of aK follows from the natural-

ity of the short exact sequence (*), the naturality of the A/s, and routine

verifications.

3.1. Corollary.    If K is a finite n-complex, then <b2(K) = 0 if and only

if<^l+1(SK)=0.

Proof.    Let f:K-+S2n+1   be   an   imbedding.   Since   <S>\{S2n+1)   and

(D*+1(S2n+2) are the unique nonzero elements of Hk(E2(S2n+1); Z2) and
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Hk+1(E2(S2n+2);Z2) we have o(<I>k.(S2n+l))=®'2:+1(S2n+2). So

o(<ti&K)) = a ■ S2(/)*(cD*(S2"+1)) = 22(S/)* o o($>k2( S2n+1))

= Z2(Sf)*(®k(S2n+2)) = Q>k+1(SK).

The corollary follows, since a is an isomorphism.

4. The classical «-minimal complexes. Let K2n+S be the complete n-

complex on 2«+3 vertices, i.e. the «-complex with 2« + 3 vertices in which

every set of «+1 vertices spans an «-simplex. Then any complex of the form

(**) k = x-1+3 * K?m+, *■■■* KTm+3

is an «-minimal complex where «=«1+«2+- • ■+np+p— 1 (cf. [2]). In

this section we give a new proof that O|"(/l),^0 whenever K has form (**).

Indeed Grünbaum proved in [2] that if K has the form (**) then "there is

a homeomorphism between /fand S2n+1 which preserves antipodes". Con-

verting this to our notation, Grünbaum's K is exactly our D'2(CK) and his

homeomorphism preserving antipodes give us an equivariant homeo-

morphism

<f>' : D2(CK) ->■ S2n+1

and hence an equivariant homotopy equivalence

<f>: D2{CK) ^ D2(S2n+^).

So, on quotient spaces, we have a homotopy equivalence

¥>:S8(CA0-*Si(5*»+1).

Therefore ^2n+í{CK) = ip*(^>22n+1(S2n+1))7í0. Since CKsSK, we have

<52*+1(S7r)7i0, and hence, by Corollary 3.1, (^"(/Q^O as desired.

5. The «-minimal complexes of Zaks. In [7], Zaks proved the existence,

for each «^2, of infinitely many mutually nonhomeomorphic «-minimal

complexes. He was able to give explicit examples for «>2, but for «=2 a

slight indeterminacy remained. In this section we remove that indeter-

minacy (exactly as Zaks conjectured it would be removed). Our main tool

is

5.1. Theorem. Suppose K and K' are complexes and <&2(K) 5¿ 0. If there

is a continuous function f:K—*-K' such that for each x e K' ,f~l(x) is con-

tained in a closed simplex of K, then <t>2(.K')5¿0.

Proof. Define <f>f:D'2(K)^D2(K') by <j>t(xu xa)=(/(x1),/(xa)). Let r

be an equivariant retraction of D2(K) onto D2(K), and A:S2(Ä)->-S2(^') be

the map induced on quotient spaces by cj>f°r:D2(K)->-D2(K'). Then

k*(pi(K')) = <l>i(K)*0. So O2(*V0.
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5.2. ModifiedZaks construction. Consider the sequence of 2-complexes

X0, Xu X2, ■ ■ ■ , where A~0=A", and Xi is constructed from A3_x as follows :

let x} and yt be distinct points in the interior of the same 2-simplex of

Xj_x\ subdivide Xj__x so that x} and y¡ are nonadjacent vertices of the new

triangulation; then X¡ is the quotient complex of X¡_x obtained by identi-

fying Xj and y¡. Applying Theorem 5.1 to the natural projection map

Pi'-Xj_x-*Xj we have <Í>2(A3)?í0, and so X¡ is not imbeddable in A4, for

eachy'_0. Zak's argument now completes the proof that X¡ is in fact 2-

minimal. Since A", has exactly/ local cut-points, A¿ and X¡ are not homeo-

morphic if ij&j.

6. More 2-minimal complexes. In this section we describe a simple

procedure for constructing many new 2-minimal complexes. The pro-

cedure can be adapted to one for constructing «-minimal complexes for

«>2. Our examples show that the collection of 2-minimal complexes is not

nearly exhausted by repeatedly applying Zaks construction to one of the

complexes A",, K\ * A3, or K%* K%* K3. Let Tbe a tree (finite contractible

1-complex) and/!,/2 be simplicial imbeddings of Tinto a subdivision of

A = A"72 such that f(T) n f2(T)= 0 and f{T) Uf2(T) is a subset of the
interior of a 2-simplex of the original triangulation of K. Let L be the

quotient complex obtained by identifying/^/) with/2(/) for each / 6 T. By

Theorem 5.1, O2(L)#0, so L is not imbeddable in A4. To show that L is

2-minimal, let A be a 2-simplex of L. Then A is a 2-simplex of K and it

suffices to consider the case An (f1(T)uf2(T))=0. Set K' = K— int A

and L! — L—int A, and let /:A"'^A4 be a piecewise linear imbedding (cf.

[6]). We take A4 to be the space of quadruples (xu x2, x3, x4). By a

deformation of A" we can assume there is a 2-simplex S of the subdivided

A" and 2-disks DY and D.2 in the interior of S such that f(T)^ Dt, ;'=1, 2,

and i is linear on 5". We now alter i so that i(S) is contained in the Jt4 = 0

hyperplane of A4. Now alter i again so that

i(Dx) = {(Xl, x2, 0, 0) e A4 I x\ + x\ = 1},

i(D2) = {(xx, x.2, 0, 1) e A4 I x\ + x\ = 1},

and

{(xu x2, x3, x¿ I x\ + xi + xl = 1,0 <i xt < 1} * i(D,) u i(D2).

Now assume T is a subcomplex of the standard 3-ball D3. Since any two

piecewise linear imbeddings of a tree in A3 are ambiently isotopic, there

is an imbedding h:Dzx [0, 1]—>Rl such that irth(xlt x2, xa, s)=s where

7r4(Xj, X2, X3, X}) = Xi',

n(xl5 x2, x3, s) = (Xi, x2, x3, s)
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ifx?-r-xf-r-x!=l, 0 = .5^1;

ft(í,0)=io/1(í)   ifíeT;
and

h(t, l) = /o/2(0   ifíeT.

Let g:D3-^[0, 1] be a piecewise linear map such that g(xly x2, x3) = 0 iff

(xx, x2, x3) e Tandg-(x1? x2, x3)=l iffxi+x2+x3=l. Define k: D2—>-D3 by

k(x)=tT1 o h1 ° i(x) where tt^.D^x [0, 1]^D3 is the projection. Finally

define ;:/:'->A4 by

j{x) = i(x) if x ë K' — int A»2,

= «(ATx), $(*(*)))    ifxeA>2.

It is easily verified that y induces an imbedding of L' in A4, and our proof

that L is 2-minimal is complete. L is distinct from any result of the Zaks

construction since L has no local cut-points, and L is distinct from the

classical 2-minimal complexes since L is not simply connected. By choosing

T to be very complicated and iterating the above process, 2-minimal

complexes of great complexity can be constructed.
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