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TRANSITIVE ACTIONS  ON  HIGHLY  CONNECTED  SPACES

VICTOR  SCHNEIDER1

Abstract. Let G be a compact, connected Lie group and H a

closed subgroup of G. It is shown that if GjH is highly connected

relative to Rk(G) — Rk(H), GjH splits as a product of homogene-

ous spaces of simple Lie groups. This is used to show that the only

transitive, effective actions on a large class of products of spheres

are products of the known actions on the individual spheres.

1. Introduction. A homogeneous space is a differentiable manifold

which admits a transitive, differentiable action by a compact, connected

Lie group. A transitive action of G on A' is called irreducible if no proper

normal subgroup of G already acts transitively on X. A natural problem

is to classify all effective, transitive (or irreducibly transitive) differentiable

actions by compact, connected Lie groups on a given homogeneous space.

Homogeneous homotopy spheres were classified by Montgomery and

Samelson [7], Borel [1] and Poncet [9] as follows: Any homogeneous

homotopy sphere is standard, that is, has the usual differentiable structure;

and, aside from a few low dimensional cases, the only irreducible actions

are the standard ones. In [5] Hsiang and Su got similar results on Stiefel

manifolds: For a large class of Stiefel manifolds, the only transitive

actions are standard ones. One purpose of this paper is to classify irre-

ducibly transitive actions on some highly connected spaces.

Any compact, connected Lie group G can be uniquely expressed as

follows:

G = GjN = Gx x G2 x ■ ■ ■ X GJN

where Gt is either S1 or a simple, simply connected Lie group and N is a

finite normal subgroup of G. If G acts transitively on X, then G has a

natural action on X which may be represented as a translation on G\H.

Let Hi = G¿nH If Rk(G) = Rk(//), then H=Hxx-xHs and X is
diffeomorphic to GjHxx- ■ -xGJHs. If Rk(/7)>0, it is not in general

true that equality holds and so the action of G is not necessarily the product

of the actions of the Gt on GjBt. We show in this paper that if GjH is
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highly connected relative to Rk(G) — Rk(H), then the action of G does

split as a product action.

Let G act transitively on X=GjH. Then the rank of A', denoted Rk(Z),

is defined as the difference in the rank of G and H. This is well defined

(independent of what Lie group is acting) and, in fact [5],

00

Rk(A-) = - J (-1)¿ dimfoW © 0,

where Q is the rationals. For positive integers r, we define <f>(r) = 4r — 1 if

rjil,2, 4, 5, 8, 9; <f>(r)=4r+3 if r=\, 2, 5, 9; and </>(r)=4/-+7 if r=4, 8.

Theorem A (Splitting Theorem). Let X be a homogeneous space

having an irreducibly transitive action by a Lie group G = GXX- ■ -XGJN.

IfRk(X) = r and X is <¡>(r)-connected, then X is dijfeomorphic to the product

GJHi x ■ • • X GJHS and the /7, = c7!n// are simple and simply connected.

Theorem B. If a homogeneous space X of rank r is a homotopy product

of spheres with the dimension of each sphere greater than <f>(r), then X is

dijfeomorphic to that product of standard spheres. Moreover, any effective,

irreducibly transitive action on Xis a product of the known actions on each

sphere.

Theorem C. Let Rk(X) = r. Then, if X is [max(39, 4r+3)]-connected,

X is dijfeomorphic to a product of standard Stiefel manifolds.

2. Preliminaries. All simple Lie groups G are classified up to local

isomorphism type. The classes are denoted Ar, Br, Cr, Dr (the classical

groups) and G2, Ft, E6, £,, £8 (the exceptional groups). The following is

a list of the degrees of the indivisible rational cohomology generators for

each of the local isomorphism types and is also a list of the degrees of

the infinite generators of the homotopy groups [3] :

• ,2r+l

■ ■ ,4r-l
• • ,4r-1
■ • ,4r-5,2r-l

27,35,39,47,59
19,23,27,35

Ar: 3,5,7,-
BT: 3,7,11,

Cr: 3,7,11,

Dr: 3,7,11,

Es: 3,15,23
E7: 3,11,15

Ee: 3,9,11,15,17,23
F4: 3,11,15,23

G2: 3,11

Therefore, the dimension of /f1(G; Q) equals the number of 5*1 factors

of G, and the number of indivisible generators in H3(G; Q) equals the

number of simple factors of G which are simply connected.
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A straightforward spectral sequence argument will establish the

following lemma for any coefficient group.

Lemma 2.1. If GjH is n-connected, the inclusion map i:H^-G induces

an isomorphism on cohomology through dimension n — \.

The next lemma follows immediately from Lemma 2.1 and the table.

Lemma 2.2. If GjH is 4-connected, then G and H have the same number

ofS1 and simple factors.

Lemma 2.3. Let X=XxxX2, where Xt is a compact, simply connected

manifold of positive dimension. If X has the homotopy type of a product of

spheres and H*(XX; Z) has no more than one indivisible generator in any

dimension, then Xx has the homotopy type of a product of spheres.

Proof. Since there is no torsion in H*(X; Z), we have H*(X; Z)~

H*(XX;Z)®H*(X2;Z) and we may identify H*(XX;Z) with the sub-

algebra H*(XX;Z)®\ of H*(X;Z). So Xx has the cohomology ring

structure of a product of spheres. We will produce a product of spheres Y

and a map from F to X, which induces an isomorphism on Z-cohomology.

Since the spaces Xx and Y are simply connected manifolds, the map must

be a homotopy equivalence.

Let /:IISS"!)—>X be a homotopy equivalence and p:X-*Xx be a pro-

jection. Suppose 1, ux, ■ ■ ■ ,uk is a set of indivisible generators of

H*(XX; Z). Define Y=\lkSn', «¿=deg u¡, and define Yx to be that factor

of Il'S"1 which consists of all the spheres whose dimension is deg uit

f-1, •••,*.
Now for each ;', p*(u¡) is contained in a basis for the indivisible elements

of H"(X;Z), q — degUi. Since/* is an isomorphism, it takes a basis of

indivisible elements to a basis of indivisible elements in Hq(WsSn';Z).

The submodule of these indivisible elements has a natural basis of /^ 1

generators coming from the / spheres of dimension q in the product; i.e.,

if V is a generator in H"(SQ; Z), a basis is formed by Vx, ■ ■ ■ , Vt which

denotes the images of V in Hq(\~l'Sn';Z) under the maps induced by

projections on each factor. So we have f*p*(u^) = a.xVx-\-- ■ ■ + ol1V1. If

each element of the basis containing f*p*(uk) is written as an integral

combination of Vx, ■ ■ ■ , K, and these coefficients are used as rows in a

matrix, the matrix must have determinant ±1 since it expresses a change

of basis in a free group. Expanding the matrix about the row a1; ■ • • , a,,

we get etxAx + - ■ --l-a,/4.j=±l. Now we define two maps: Letg¿:>S"x- • -x

SQ^-S"x- ■ -xS", I factors, be a map which has degree Ax, ■ ■ ■ , At on

respective factors and let dj:S'1^>-S'*x ■ ■ -xS", I factors, be the diagonal

map.
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With these maps defined for each i, we have g=gxx- ■ -xgk: Yx-^-Yx

and d=dx x ■ ■ ■ xdk: Y—>-Yx. Let ;': Yx-^-UsSni be inclusion as a factor and

identify /* V, = Vi. Hence we have the mappfigd: Y-^-Xx, and since, for all i,

(pfigd)*ui: = d*g*i*(0L1V1 + ■■■ + ^V,)

= d*(xxAxVx + ■■■ + XfAM

= (Mi + ■■■ + oljA^V

-±K,

the induced map is an isomorphism.

3. Splitting theorem. Let G=GxxG2 act transitively on X=G\H. Let

//2 = G,n//. Following Montgomery and Samelson [7], we let I\ be the

image of H under projection into Gt, and denote the product Yx x Y2 by Y.

If X is simply connected, then H and, hence, I\ and Y are connected. Let

x be the element of X having isotropy subgroup H and let Y(x) be the orbit

of x under Y.

Lemma 3.1 (Montgomery and Samelson) [7, p. 458]. If G=GxxG2

acts transitively on a simply connected space X, then Y(x) — Yi(x), YjH

is dijfeomorphic to T,///,, and YjHj is a compact, connected Lie group.

Lemma 3.2. If there is an irreducibly transitive action of G on a simply

connected space X, then G is semisimple.

Proof. Suppose G is not semisimple. Then G can be written as

GxxG2 where GX = S1. Let x e X have isotropy subgroup H. If YX = GX,

then X=G(x) = G2(Gx(x)) = G2(Yx(x)). But by Lemma 3.1, ri(.\) = r2(x),

so X=G2(X), contradicting the fact that the action of G is irreducibly

transitive. If YX^GX, since Yx is connected, Yx is the identity, ex, of Gx.

So H=ex x H2 which implies that X is not simply connected.

Proof of Theorem A. By Lemmas 2.2 and 3.2, we know that G and

H are simply connected and have the same number of simple factors.

Let //¿ = <j,n/7. If /?=//, x • ■ • xHs, there is nothing to prove. Suppose,

to the contrary, that equality does not hold. Then clearly the //, and

their identity components B° are normal in H. But H\x- • -xH° = H'

can only be a proper normal subgroup of H if one of the H° reduces to

the identity. Since //' is normal, H\H' is a Lie group and Yl3(H¡H') must

have at least one infinite generator. Since n3(/7) has s such generators,

we see by the homotopy sequence for H'^-H^-H/H' that U3(H') must

have less than s infinite generators and so must have less than s factors.

Hence, one of the /7, is finite. G can be rewritten as GxxG2 where Gx is

the G¡ having finite Hf and G.¿ is the rest of the factors. Let Hi = GiCiH.

We will show that T1 = C1. This will prove Theorem A by showing that

the factor G2 acts transitively.
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Since Hx is finite, H is a finite covering of F2 and thus Rk(//) = Rk(r2).

Also r=Rk(A-) = Rk(G)-Rk(Ä) = Rk(C7)-Rk(r2)^Rk(C)-Rk(C2) =

R^Gi). Since GjH is </>(?-)-connected, we see from the exact homotopy

sequence of the fiber bundle YIH->G¡H^G¡Y, that TTv(G¡Y)~iTq_x(YlH)
for q^<f>(r). By Lemma 3.1, Y¡H is homeomorphic to the compact,

connected Lie group YjHit so ttq_x(YIH) is finite whenever q — 1 is even.

Since G/r = GI/rixG2/r2, 7ra(G1/ri) is finite for odd qf^<j>(r). Hence for

every infinite generator in nq(Gx), (?_</>(/•), there is an infinite generator

in 7Ta(ri). This can be seen by examining the homotopy sequence for the

principal bundle Yx—>Gx-*GxjYx. If G, is a classical group or one of the

exceptional groups G2, Ft, or £e, all the infinite homotopy generators of

G, are in odd dimensions less than or equal to </>(Rk(G,))_</>(/•). So YX<=GX

and has at least as many infinite homotopy generators. Hence Rk(rj) =

Rk(G,) and the infinite homotopy generators for Yx and Gx are in the

same dimensions. A check of Borel and Siebenthal's classification of

subgroups of maximal rank [4] shows that T1 = G1. Some of the infinite

homotopy generators for E1 and Es occur above the bound </>(/■); however,

by checking the list of generators and [4], we easily see that Yx and Gx

are equal even in these cases. This completes the proof.

As the proof illustrates, the variations of <j>(r) from 4r —1 are for

technical reasons to handle the exceptional groups. The condition that

X be (4r — l)-connected is necessary as the following example shows:

Let Yi:Sp(/--l)^Sp(r) and Y2:Sp(r-l)xSp(«-r-|-l)^Sp(«) for some

«>2r be the standard embeddings. Define the embeddingxF:Sp(/- — l)x

Sp(#i-r+l)-Sp(r)xSp(#!) by xY(gx, g2) = C¥x(gx),Y2(gx, g2)). Let G =

Sp(r)xSp(«) and H=\mxY. Then G acts transitively on G\H by trans-

lation, GjH is (4r—2)-connected but not (4r — l)-connected, and the

action is not a product action.

4. Theorems B and C. To prove Theorem B we will need the following

two lemmas.

Lemma 4.1. Let Xbe a homogeneous space of rank r having the homotopy

type of a product of spheres. If the dimension of each sphere is greater than

4>(r), no exceptional group G can act transitively on X.

Proof. By considering the homotopy exact sequence for the principal

bundle H-^G-^X, one can see that it is impossible for X to satisfy the

conditions of the lemma while G is exceptional. Each exceptional group

must be checked separately; the necessary homotopy information may be

found in [3], [6], [11].

Lemma 4.2. If X is a homotopy product of spheres with the dimension

of each sphere greater than 1 and G is a simple classical group acting

transitively on X, then X is dijfeomorphic to a standard sphere.
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Proof. We will prove the lemma in the SU case; the other cases are

similar. The following information is needed [2] (similar information for

the other cases may be found in [2], [10]):

H*(SU(n);Z2) is an exterior algebra with generators w2j+x,j=l, • ■ • ,

n — l, and deg w2j+x = 2j+l. Also

Sq2iw2j+X = C\w2u+i)+x,   for i < j,j + I <n —I,

= 0, otherwise,

where C¿ is the binomial coefficient reduced modulo 2.

By Lemma 2.2, H must be simple; in fact, H must be SU(k). If H were

not SU(k), TTb(GlH)®Q7tQ. So we have the principal bundle SU(k)-+

SU(ri)-^>-X. Hence X must be at least 8-connected and therefore

;*:H*(SU(n); Z2) -> H*(SU(k); Z2)

is an isomorphism up to dim 7 by Lemma 2.1. By the naturality of the

Steenrod squares, we have that /* is an isomorphism up to dimension

2k — 1 provided 2k is not a power of 2. If 2k is a power of 2 and the

isomorphism does not extend to that level, a spectral sequence argument

will show that there exists a generator in H2k~1(X; Z2) that maps onto

w2k-i e H2k~1(SO(n); Z2). But Sq2w2k_x¿¿0, so by naturality we have a

nonzero Steenrod square in X. This is clearly impossible. Hence X can

only be the product of the spheres of dimensions 2k+l, 2k+3, ■ ■ ■ ,

2« —1. Examining the spectral sequence for SU(k)^>-SU(n)^-X we see

that the generators in dimensions 2Ar-|-l and 2k + 3 must map onto corre-

sponding generators in H*(SU(n);Z2). This will again give X a nonzero

Steenrod square unless n—2^k. If n—2=k, X has exactly two infinite

homotopy generators. By the work of Oniscik [8], we see that X must be

the complex Stiefel manifold of 2 frames in complex «-space. By [5,

Theorem 3.6], X cannot be a product of two positive-dimensional mani-

folds. Hence «-1=A: and Jfis diffeomorphic to S2n~1 = SU(rí)¡SU(n-l).

Proof of Theorem B. Suppose there is an irreducibly transitive,

effective action of G on X. Then, by the Splitting Theorem, X is diffeo-

morphic to the product Gx\Hxx- ■ -xGjHs. Lemma 4.1 can be used to

eliminate the exceptional groups as possible factors. Suppose G{ is a

classical group, say SU(n). Then, as in Lemma 4.2, fft must be SU(k) and

GjHt has a nonzero Steenrod operation unless k=n—2 or « — 1. But in

these cases, Lemma 2.3 applies and öj//f is a homotopy product of

spheres. This is impossible if k=n—2 [5]. Hence by Lemma 4.2 each

GjHi is a standard sphere with an almost effective, transitive action of G,.

Since the action of G is the product action, N=NXX- ■ -xNs, where

/V. = C7.n/V. So G = G¡N=GXx- ■ -xGs, where G¿ = 0¿/Arí acts transitively

and effectively on (?<//?<, a standard sphere. This completes the proof.
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Example. SO(&) acts transitively on SO(8)jSO(6) which is difleo-

morphic to SexS7. This shows that it is necessary to place some restric-

tions on the dimension of the spheres in order to get the action to split as a

product action.

Proof of Theorem C. By the Splitting Theorem, A' is a product of

homogeneous spaces each having a transitive action by a simple, simply

connected Lie group. Let X¿ be one of the factors and let G¿ be the group

acting on it. Since X is at least 39-connected, the same arguments used in

Lemmas 4.1 and 4.2 show that G, is not exceptional and, if G¿ is a SU(n),

Spin(«) or Sp(«), then the isotropy subgroup H¿ is a SU(k), Spin(Är) or

Sp(k), respectively. The high connectedness of Xt forces the embeddings

to be standard by [5, Theorem 2.4], and so each X¡ is a standard Stiefel

manifold.
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