NORMAL SUBGROUPS OF FUCHSIAN GROUPS WITH FIXED PARABOLIC CLASS NUMBER

MARC BERGER¹

ABSTRACT. Let F be a finitely generated Fuchsian group of the first kind. We provided necessary and sufficient conditions such that, for any $t \ge 1$, F has only a finite number of normal subgroups with t parabolic classes.

- 1. **Introduction.** In this paper we consider finitely generated Fuchsian groups F of the first kind. L. Greenberg [1] has shown that for any $t \ge 1$ there are only a finite number of normal subgroups of the $(2, 3, \infty)$ modular group with t parabolic classes. M. Newman [3] has obtained the same result for any (p, q, ∞) triangle group where (p, q)=1. We shall now resolve this problem for an arbitrary Fuchsian group by providing necessary and sufficient conditions for this to occur.
- 2. Preliminaries. Let D denote the unit disc $\{z:|z|<1\}$. A Fuchsian group F is a discrete subgroup of L(D), the group of conformal homeomorphisms of D. A Fuchsian group F is said to be of the first kind if the closure, of the set of fixed points of nonelliptic elements of F distinct from the identity, is the entire boundary of D.

Finitely generated Fuchsian groups of the first kind have the presentation:

Generators:
$$a_1b_1, \dots, a_gb_g, e_1, \dots, e_k, p_1, \dots, p_r$$

Defining relations: $e_1^{v_1} = e_2^{v_2} = \dots = e_k^{v_k} = 1$

$$\left(\prod_{i=1}^g a_ib_ia_i^{-1}b_i^{-1}\right)e_1, \dots, e_k, p_1, \dots, p_r = 1.$$

If F has the above presentation, we say that F has signature $(g; v_1, \dots, v_k; r)$ and denote the group by $F(g; v_1, \dots, v_k; r)$. The signature tells us there are precisely k nonconjugate (in F) maximal cyclic subgroups of

Received by the editors April 12, 1972.

AMS (MOS) subject classifications (1970). Primary 20H10, 30A58; Secondary 32J15, 20F05.

Key words and phrases. Discontinuous group, Riemann surface, parabolic class.

¹ These results are contained in the author's doctoral thesis which was written under the direction of Professor Leon Greenberg at the University of Maryland.

F generated by an elliptic element of order v_i , $i=1,\dots,k$, and r non-conjugate (in F) maximal cyclic subgroups of F generated by a parabolic element. F is said to have r parabolic classes. The letter g denotes the genus of F.

The following theorem (Knopp and Newman [2]) will be useful.

THEOREM 1. Let N be a normal subgroup of a Fuchsian group F with finite index μ . Suppose that the r parabolic generators in F have exponent m_i modulo N, $1 \le i \le r$ (that is m_i is least positive integer such that $p_i^{m_i} \in N$). Then the number t of parabolic classes of N is given by $t = \mu \sum_{i=1}^{r} (1/m_i)$.

PROOF. Since F acts discontinuously on D we obtain quotient surfaces D/N and D/F. N being a normal subgroup of F implies the (branched) covering $\phi: D/N \rightarrow D/F$ is normal. D/F is a closed surface with r punctures and D/N is a closed surface with μ/m_i punctures over each of the r punctures in D/F. The theorem now follows. \square

3. Initial results.

LEMMA 2. Let p and q be distinct primes with the properties q>p and $q\equiv 1\pmod{p}$. There exists a nonabelian group of order pq.

PROOF. Let $H=\langle b \rangle$, $K=\langle a \rangle$ where $a^p=b^q=1$. Since $q\equiv 1 \pmod p$ we can, by the Fermat theorem, choose an integer r such that $r\not\equiv 1 \pmod q$ but $r^p\equiv 1 \pmod q$. Define $\psi(a^i)b=b^{r^i}$, $1\leq i\leq p$. Then $\psi(a^i)b$ is clearly an automorphism of H and ψ is a homomorphism from K to the automorphism group of H. Therefore we can form the semidirect product G of H by K.

Since

$$|G| = |HK| = (|H| \cdot |K|)/|H \cap K| = pq$$

G has order pq. Since $\psi(a)b=a^{-1}ba=b^r$, $r \not\equiv 1 \pmod{q}$ we conclude that G is nonabelian. \square

THEOREM 3. There exists an infinite number of groups G of order pn, p prime, n a positive integer, with generators satisfying the relations

$$x^p = y^p = (xy)^n = z^n = 1.$$

PROOF. Let G be the nonabelian group of order pq in Lemma 2. Since q > p there is a unique q-Sylow subgroup generated by some element $z \in G$. Let a generate one of the p-Sylow subgroups. Consider the element y = az. Then y cannot have order q. For, if it did, the uniqueness of our q-Sylow subgroup would imply $az = z^k$ for some $1 \le k < p$ and hence $a = z^{k-1}$. But a has order p and z has order q, therefore $\langle a \rangle$ and $\langle z \rangle$ can only have the identity element in common. Hence y must have order p (y cannot have order pq since G is noncyclic). Setting $x = a^{-1}$ we obtain the

relations $x^p = y^p = (xy)^q = 1$. Clearly x and y generate G. By the Dirichlet theorem on primes there are an infinite number of primes q satisfying $q \equiv 1 \pmod{p}$, and the theorem follows. \square

We shall denote the groups of the previous theorem by [p, p, n].

Let G be a group with an abelian subgroup A of finite index n. Let $X = \{x_1, x_2, \dots, x_n\}$ be a set of coset representatives of the right cosets Ag. If $g \in G$ we define a mapping τ of G into A by

$$\tau(g) = x_1 g(\overline{x_1 g})^{-1} x_2 g(\overline{x_2 g})^{-1} \cdots x_n g(\overline{x_n g})^{-1}$$

where $\bar{g} \in X$ is the representative of the right coset Ag. The mapping τ is a homomorphism of G into A called the *transfer* of G into A. If A is contained in the center of G, $\tau(g)=g^n$.

4. Main result.

DEFINITION. A Fuchsian group F is said to have the *finite class property* (FCP) if for any integer $t \ge 1$ there are only a finite number of normal subgroups of F with t parabolic classes.

THEOREM 4. A Fuchsian group F has (FCP) if and only if (1) F is of genus zero, (2) F has exactly one parabolic class and (3) the elliptic generators of F have pairwise relatively prime orders. That is if and only if $F = F(0; v_1, v_2, \dots, v_k; 1), (v_i, v_j) = 1, i \neq j, i, j = 1, \dots, k$.

PROOF. We shall prove the necessity first. Our method is to show that if F is not of the above type we can construct for some $t \ge 1$ an infinite number of normal subgroups with t parabolic classes.

Case 1. We first show that F cannot have more than one parabolic class.

Suppose F has two or more parabolic classes p_1, p_2, \dots, p_r, p with relation:

(*)
$$\left(\prod_{i=1}^{g} a_i b_i a_i^{-1} b_i^{-1} \right) e_1, \cdots, e_k, p_1, \cdots, p_r = p.$$

Denote by C_q the cyclic group of prime order q generated by x. Define the homomorphism $\phi: F \rightarrow C_q$ by

$$\phi(e_j) = \phi(a_i) = \phi(b_i) = 1, \quad 1 \le j \le k, \ 1 \le i \le g,$$

$$\phi(p_1) = x^{m_1}, \cdots, \phi(p_r) = x^{m_r}, \phi(p) = x,$$

where $1 \leq m_i < q$, $\sum_{i=1}^r m_i \equiv 1 \pmod{q}$.

Since q is prime the order of x^{m_i} is q, $i=1,\dots,r$. Let $N=\ker \phi$. Then p_i , p, $i=1,\dots,r$, have exponent q modulo N. By Theorem 1, N has r+1 parabolic classes. Letting $q\to\infty$ we have obtained an infinite number of normal subgroups N with t=r+1 parabolic classes.

Case 2. Suppose F has positive genus g. Consider the homomorphism $\phi: F \rightarrow [2, 2, n]$ defined by

$$\phi(a_1) = x$$
, $\phi(b_1) = z$, $\phi(p) = z^{-2}$ and $\phi(a_j) = \phi(b_j) = \phi(e_i) = 1$, $1 \le i \le k$, $2 \le j \le g$.

This is in fact a homomorphism, for in $[2, 2, n] \simeq D_n$, the dihedral group on n letters, $xzx^{-1}=z^{-1}$ or $xzx^{-1}z^{-1}=z^{-2}$.

Let n=2m and set $N=\ker \phi$. Then $\phi(p^m)=z^{-2m}=z^{-n}=1$ implies $p^m \in N$. Clearly $\mu=|F/N|=2\cdot 2m=4m$. Therefore setting t=4 and letting $m\to\infty$ we have found an infinite number of normal subgroups with t=4 parabolic classes.

Case 3. If F has genus zero and only one parabolic class generator p, F must have at least two elliptic elements e_1 , e_2 . This is an immediate consequence of the relation (*). We shall now assume that there is a prime q dividing the orders v_1 and v_2 of e_1 and e_2 respectively. Define the homomorphism $\phi: F \rightarrow [q, q, n]$ by

$$\phi(e_1) = x$$
, $\phi(e_2) = y$, $\phi(p) = xy$ and $\phi(e_j) = 1$, $3 \le j \le k$.

Setting $N=\ker \phi$ we have $p^n \in N$ and |F/N|=qn. Taking t=q and letting $n\to\infty$ we obtain an infinite number of normal subgroups N with t=q parabolic classes.

These are clearly the only cases and the necessity is completed.

To prove the sufficiency, the following lemma is used.

LEMMA 5. Let F be a Fuchsian group with signature

$$\sigma = (0; \nu_1, \nu_2, \cdots, \nu_k; 1)$$

where $(v_i, v_j)=1$, $i\neq j$, $i, j=1, 2, \dots, k$. Let N be a normal subgroup of finite index in F with t parabolic generators. Let G=F/N. G has a subgroup U such that

- (a) $U \subseteq center \ of \ G$,
- (b) $[G:U] \leq t^t$.

PROOF. Let $\{x_i\}_{i=1}^k$, z be the images of the elliptic and parabolic generators in G. Let $U = \bigcap_{g \in G} g\langle z \rangle g^{-1}$. U is clearly a normal subgroup of G. For $g \in G$ let $\alpha_g : U \rightarrow U$ be the automorphism $(u)\alpha_g = g^{-1}ug$. We have the relations

$$\alpha_{x_1}\nu_1 = \alpha_{x_2}\nu_2 = \cdots = \alpha_{x_k}\nu_k = 1,$$

$$\alpha_{x_1}\alpha_{x_2}\cdots\alpha_{x_k} = \alpha_z = 1.$$

Since U is cyclic its automorphism group is abelian and the α_{x_i} , $i=1,\cdots,k$, commute. Solving equation (†) for α_{x_j} in terms of the remaining α_{x_i} , $i\neq j,\ i=1,\cdots,k$, we conclude that the order of α_{x_j} divides $v_1v_2\cdots v_{j-1}v_{j+1}\cdots v_k$. But the order of α_{x_j} divides v_j and $(v_i,v_j)=1,\ i\neq j,\ i=1,\cdots,k$, and therefore α_{x_j} has order 1, that is $\alpha_{x_j}=1$. This procedure works for all $\alpha_{x_j},\ j=1,\cdots,k$, hence U is central in G. Let $|G|=\mu$ and $|\langle z\rangle|=n$. By Theorem 1,

$$[G:\langle z\rangle] = [G:g\langle z\rangle g^{-1}] = t,$$

and there are $[G:N\langle z\rangle]$ subgroups conjugate to $\langle z\rangle$ with

$$[G:N\langle z\rangle] \leq [G:\langle z\rangle] \leq t$$
,

we conclude that $[G:U] \leq t^t$.

We now return to the proof of our theorem. Let us consider the following homomorphism of F into U:

$$F \xrightarrow{\phi} F/N \xrightarrow{\tau} U.$$

The mapping ϕ is the canonical homomorphism and τ is the transfer homomorphism. Let H=G/U, G=F/N, r=|U|, s=|H|. Then $s=\mu/r$ and by the lemma $s \le t^t$. Let U^s denote the subgroup of U consisting of all sth powers.

Since $U \subset Z(G)$, for all $g \in G$, $\tau(g) = g^s$. Hence $\tau \circ \phi$ is an epimorphism of F onto $G^s \supset U^s$, $G^s \subset U$. Since an abelian homomorphic image of F has order at most $\nu_1 \nu_2 \cdots \nu_k$, we obtain $|U^s| \leq |G^s| \leq \nu_1 \nu_2 \cdots \nu_k$. As U is cyclic we get $r/s \leq r/(r,s) = |U^s|$. Therefore $r \leq s|U^s|$ or $r \leq \nu_1 \nu_2 \cdots \nu_k t^t$.

Since $\mu = rs$ we conclude $\mu \leq v_1 v_2 \cdots v_k t^{2t}$.

Since the number of subgroups of bounded index in a finitely generated group is finite (Hall [4]) we obtain our result.

REFERENCES

- 1. L. Greenberg, Note on normal subgroups of the modular group, Proc. Amer. Math. Soc. 17 (1966), 1195-1198. MR 33 #7423.
- 2. M. I. Knopp and M. Newman, Congruence subgroups of positive genus of the modular group, Illinois J. Math. 9 (1965), 577-583. MR 31 #5902.
- 3. M. Newman, Two-generator groups and parabolic class numbers, Proc. Amer. Math. Soc. 31 (1972), 51-53.
 - 4. M. Hall, Jr., The theory of groups, Macmillan, New York, 1959, MR 21 #1996.

DEPARTMENT OF MATHEMATICS, MILLERSVILLE STATE COLLEGE, MILLERSVILLE, PENNSYLVANIA 17551

Current address: Division of Mathematics, District of Columbia Teachers College, Washington, D.C. 20009