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NORMAL SUBGROUPS OF FUCHSIAN GROUPS
WITH FIXED PARABOLIC CLASS NUMBER

MARC BERGER!

ABSTRACT. Let F be a finitely generated Fuchsian group of the
first kind. We provided necessary and sufficient conditions such that,
for any =1, F has only a finite number of normal subgroups with
t parabolic classes.

1. Introduction. In this paper we consider finitely generated Fuchsian
groups F of the first kind. L. Greenberg [1] has shown that for any t=1
there are only a finite number of normal subgroups of the (2, 3, c0) mod-
ular group with ¢ parabolic classes. M. Newman [3] has obtained the
same result for any (p, g, o) triangle group where (p, g)=1. We shall
now resolve this problem for an arbitrary Fuchsian group by providing
necessary and sufficient conditions for this to occur.

2. Preliminaries. Let D denote the unit disc {z:|z|<1}. A Fuchsian
group F is a discrete subgroup of L(D), the group of conformal homeo-
morphisms of D. A Fuchsian group F is said to be of the first kind if the
closure, of the set of fixed points of nonelliptic elements of F distinct from
the identity, is the entire boundary of D.

Finitely generated Fuchsian groups of the first kind have the presenta-
tion:

Generators: a;by, -, a,b,, e, ", € D1, " "5 Dy
Defining relations: el = ey =+ =¢’* =1

g
(I_I aibiai—lb,-'l) €1, "€ P15 Dy = 1.
-1

If F has the above presentation, we say that F has signature (g; vy, - -,
v r) and denote the group by F(g;, - -, »;r). The signature tells
us there are precisely k nonconjugate (in F) maximal cyclic subgroups of

Received by the editors April 12, 1972.

AMS (MOS) subject classifications (1970). Primary 20H10, 30A58; Secondary
32J15, 20FO05.

Key words and phrases. Discontinuous group, Riemann surface, parabolic class.

! These results are contained in the author’s doctoral thesis which was written under
the direction of Professor Leon Greenberg at the University of Maryland.

© American Mathematical Society 1973

32



NORMAL SUBGROUPS OF FUCHSIAN GROUPS 33

F generated by an elliptic element of order »,, i=1,---, k, and r non-
conjugate (in F) maximal cyclic subgroups of F generated by a parabolic
element. Fis said to have r parabolic classes. The letter g denotes the genus
of F.

The following theorem (Knopp and Newman [2]) will be useful.

THEOREM 1. Let N be a normal subgroup of a Fuchsian group F with
finite index . Suppose that the r parabolic generators in F have exponent
m; modulo N, 1<i=r (that is m, is least positive integer such that p;'i € N).
Then the number t of parabolic classes of N is given by t=u >7_; (1/m,).

ProOF. Since F acts discontinuously on D we obtain quotient surfaces
D[N and D|F. N being a normal subgroup of F implies the (branched)
covering ¢: D/N— D/F is normal. D/F is a closed surface with r punctures
and D/N is a closed surface with u/m; punctures over each of the r punc-
tures in D/F. The theorem now follows. []

3. Initial results.

LEMMA 2. Let p and q be distinct primes with the properties q>p and
g=1 (mod p). There exists a nonabelian group of order pq.

ProOF. Let H=(b), K={a) where a?=5b?=1. Since g=1 (mod p) we
can, by the Fermat theorem, choose an integer r such that r#1 (mod q)
but r*=1 (mod q). Define p(a?)b=>b"", 1=<i=<p. Then y(a’)b is clearly an
automorphism of H and u is a homomorphism from K to the auto-
morphism group of H. Therefore we can form the semidirect product G of
H by K.

Since

|G| = |HK| = (IH| - |K])/|H N K| = pq

G has order pq. Since yp(a)b=a"'ba=>b", r#1 (mod g) we conclude that
G is nonabelian. []

THEOREM 3. There exists an infinite number of groups G of order pn,
p prime, n a positive integer, with generators satisfying the relations

XP= P = (xy)"=2z"=1.

ProOF. Let G be the nonabelian group of order pg in Lemma 2. Since
g>p there is a unique g-Sylow subgroup generated by some element
z € G. Let a generate one of the p-Sylow subgroups. Consider the element
y=az. Then y cannot have order q. For, if it did, the uniqueness of our
g-Sylow subgroup would imply az=z* for some 1 =k<p and hence a=
z*~1. But a has order p and z has order ¢, therefore (a) and (z) can only
have the identity element in common. Hence y must have order p (y
cannot have order pg since G is noncyclic). Setting x=a~! we obtain the
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relations x?=y?=(xy)?=1. Clearly x and y generate G. By the Dirichlet
theorem on primes there are an infinite number of primes g satisfying
g=1 (mod p), and the theorem follows. []

We shall denote the groups of the previous theorem by [p, p, n].

Let G be a group with an abelian subgroup A of finite index n. Let
X={x,, x5, " * * , X, be a set of coset representatives of the right cosets 4g.
If g € G we define a mapping 7 of G into A by

7(8) = x18(x18) X8 (X,8) 1 - *  X,8(x,8)

where g € X is the representative of the right coset 4g. The mapping = is a
homomorphism of G into A4 called the transfer of G into 4. If A is contained
in the center of G, 7(g)=g".

4. Main result.

DEerFINITION. A Fuchsian group F is said to have the finite class property
(FCP) if for any integer =1 there are only a finite number of normal
subgroups of F with ¢ parabolic classes.

THEOREM 4. A Fuchsian group F has (FCP) if and only if (1) F is of
genus zero, (2) F has exactly one parabolic class and (3) the elliptic generators
of F have pairwise relatively prime orders. That is if and only if F=
FO; vy, v, -+, v 1), (v, v)=1, i), 0, j=1,- - k.

ProOF. We shall prove the necessity first. Our method is to show that
if F is not of the above type we can construct for some =1 an infinite
number of normal subgroups with ¢ parabolic classes.

Case 1. We first show that F cannot have more than one parabolic
class.

Suppose F has two or more parabolic classes p;, p,,***, p,, p With
relation:
9
(*) (I—[ aibiai—lbi—l)el’ T, ek, ) Z TR pr = p.
i=1

Denote by C, the cyclic group of prime order g generated by x. Define
the homomorphism ¢: F—~C, by

ple) =¢@)=¢0b)=1, 1=j=k 1=i=g,
$(pr) = x™, -+, $(py) = x™r, $(p) = X,

where 1=m,<gq, 27, m;=1 (mod ¢).

Since ¢ is prime the order of x™ is ¢, i=1, - - -, r. Let N=Kker ¢. Then
Pis P, i=1,--+,r, have exponent ¢ modulo N. By Theorem 1, N has
r+1 parabolic classes. Letting g—oco we have obtained an infinite number
of normal subgroups N with t=r+1 parabolic classes.
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Case 2. Suppose F has positive genus g. Consider the homomorphism
¢:F—[2, 2, n] defined by

d(@) =x, b)) =2, ¢(p)=2z?% and
$(a;) = ¢(b;) = ¢(e;) = 1, I=ifk,25j=¢g

This is in fact a homomorphism, for in [2, 2, n]~D,,, the dihedral group
on n letters, xzx'=z"! or xzx 1z 1=z72

Let n=2m and set N=ker ¢. Then ¢(p™)=z"2m=z""=1 implies
p™ € N. Clearly u=|F/N|=2 : 2m=4m. Therefore setting t=4 and letting
m—o0 we have found an infinite number of normal subgroups with r=4
parabolic classes.

Case 3. If F has genus zero and only one parabolic class generator p,
F must have at least two elliptic elements e,, e,. This is an immediate
consequence of the relation (). We shall now assume that there is a prime
g dividing the orders », and », of e, and e, respectively. Define the homo-
morphism ¢: F—[q, g, n] by

dle)=x, dle) =y, d(p)=xy and ¢le,) =1, 3=j=k

Setting N=ker ¢ we have p” € N and |F/N|=qn. Taking t=q and letting
n—o0 we obtain an infinite number of normal subgroups N with t=¢
parabolic classes.

These are clearly the only cases and the necessity is completed.

To prove the sufficiency, the following lemma is used.

LEMMA 5. Let F be a Fuchsian group with signature
o= (0;”1,"’2:"’a”k; 1)

where (v;, v;)=1, i#j, i, j=1,2,---, k. Let N be a normal subgroup of
finite index in F with t parabolic generators. Let G=F|N. G has a subgroup
U such that

(a) U<center of G,

(b) [G:U]=¢.

PrROOF. Let {x;}i_;, z be the images of the elliptic and parabolic
generators in G. Let U=(,.q g(z)g~*. U is clearly a normal subgroup of
G. For g € G let a,: U—U be the automorphism (u)o, =g *ug. We have the
relations

Xg) V1 = K, Vg = " ° = Og Vg = 1,

Q)

O Oy, = * " 0y, = 0, = L.
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Since U is cyclic its automorphism group is abelian and the o, , i =1,---,
k, commute. Solving equation (f) for «, in terms of the remaining oc, ,
i#j, i=1, , k, we conclude that the order of o, divides »y», -
v; —1”;+1 V. But the order of «, divides ¥; and (v;, v,)—l i#j, i=1,

, k,and therefore a,, has order 1 that is «, =1. This procedure works
for all g, j=1, " k "hence U is central in G. Let |Gl|=u and |{z)|=n.
By Theorem 1,

[G:(2)] = [G:g{z)g7 '] =1,
and there are [G:N(z)] subgroups conjugate to (z) with
[G:NZ] = [6G:D] =1,

we conclude that [G: U]t
We now return to the proof of our theorem. Let us consider the following
homomorphism of F into U:

¢ T
F—> FIN— U.

The mapping ¢ is the canonical homomorphism and 7 is the transfer
homomorphism. Let H=G|U, G=F|N, r=|U|, s=|H|. Then s=pu/r and
by the lemma s=t*. Let U* denote the subgroup of U consisting of all sth
powers.

Since U= Z(G), for all g € G, 7(g)=g*. Hence 7 o ¢ is an epimorphism
of F onto G*> U, G°< U. Since an abelian homomorphic image of F
has order at most »,v, - - * v, we obtain |U*|=Z|GS|Svyve - v As Uls
cyclic we get r/s=r/(r, s)=|U?|. Therefore r Ss|Us| or r=wyv, - - nt.

Since u=rs we conclude u=<v,v, - - - v, 2.

Since the number of subgroups of bounded index in a finitely generated
group is finite (Hall [4]) we obtain our result. []
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