DUALITY IN B*-ALGEBRAS

SHEILA A. McKILLIGAN

ABSTRACT. Let X be a locally compact Hausdorff space and let $C_0(X)$ be the algebra of continuous functions on X vanishing at infinity. Then $C_0(X)$ is a dual algebra if and only if the operator $\mu \rightarrow f d\mu$ is weakly completely continuous on $C_0(X)^*$ for all $f \in C_0(X)$. This improves a recent result of P. K. Wong and provides a description of dual B^* -algebras.

1. **Introduction.** In two recent papers ([4], [5]) the concept of duality for B^* -algebras has been considered. We offer a simple proof of an improved version of the theorem in [5] which characterises dual commutative B^* -algebras. In turn, this improves the corresponding result for noncommutative B^* -algebras.

The main idea involved is that of weakly completely continuous linear operator. A bounded linear operator T on a Banach space A is weakly completely continuous if, given $\{a_{\alpha}\}$ a bounded net in A, there exists $a \in A$ and a subnet $\{a_{\beta}\}$ of $\{a_{\alpha}\}$ such that $\{Ta_{\beta}\}$ converges weakly to Ta. We abbreviate weakly completely continuous to w.c.c. If A is a Banach space we let $a \rightarrow \hat{a}$ be the natural isomorphism of A into A^{**} , the second dual of A, and write $A^{*} = \{\hat{a} \in A^{**} : a \in A\}$.

If X is a locally compact Hausdorff space, we write C(X), $C_0(X)$ and M(X) for the bounded continuous functions on X, the continuous functions vanishing at infinity on X and the space of all bounded regular Borel measures on X, respectively. We have, of course, that $M(X) = C_0(X)^*$. For $f \in C_0(X)$, $\mu \in M(X)$, $f d\mu \in M(X)$ is defined by $f d\mu(g) = \int_X fg d\mu$ $(g \in C_0(X))$.

2. Some results for B^* -algebras. We prove some results for the algebra $C_0(X)$ where X is locally compact Hausdorff and note that they hold for any commutative B^* -algebra. The crucial point is that the weak complete continuity of certain operators on M(X) is necessary and sufficient for X to be discrete.

THEOREM 1. Let X be a compact Hausdorff space. If the operator $\mu \rightarrow f d\mu$ is w.c.c. on M(X) for every $f \in C(X)$, then X is finite.

Received by the editors June 8, 1972.

AMS (MOS) subject classifications (1970). Primary 46L05; Secondary 46J10. Key words and phrases. Dual B*-algebra, weakly completely continuous operators.

[©] American Mathematical Society 1973

PROOF. We have, in particular, that the identity operator on M(X) is w.c.c., which implies that the closed unit ball of M(X) is weakly compact. Hence [2, p. 425], M(X) is reflexive, and so [2, p. 67], C(X) is reflexive. From this it follows that X is discrete and so finite.

We aim to adapt this result to locally compact X but to do this we require two technical lemmas which we now present.

LEMMA 2. Suppose X is a locally compact Hausdorff space and Y a compact subset of X. There is an isometric linear space isomorphism of M(Y) into M(X) given by $\mu \rightarrow \mu'$ where

$$\mu'(f) = \mu(f|_{Y}) \quad (f \in C_0(X)).$$

PROOF. This is immediate from the results on p. 133 of [3].

LEMMA 3. Suppose X is a locally compact Hausdorff space and Y a compact subset of X. Suppose that $\mu \rightarrow f d\mu$ is w.c.c. on M(X) for every $f \in C_0(X)$. Then $\mu \rightarrow f d\mu$ is w.c.c. on M(Y) for every $f \in C(Y)$.

PROOF. Let $\{\mu_{\alpha}\}$ be a net in M(Y) with $\|\mu_{\alpha}\| \leq M$ for all α , and let $f \in C(Y)$. By Lemma 2, $\{\mu'_{\alpha}\}$ is a net in M(X) with $\|\mu'_{\alpha}\| \leq M$ for all α . Furthermore, by p. 133 of [3], there is $f' \in C_0(X)$ such that $f'|_Y = f$. From our weak continuity assumption, there is $\mu \in M(X)$ and a subnet $\{\mu_{\beta}\}$ of $\{\mu_{\alpha}\}$ with $\{f' d\mu'_{\beta}\}$ converging weakly to $f' d\mu$. If $\Phi: M(X) \to M(Y)$ is defined by restriction, then $\Phi^*: M(Y)^* \to M(X)^*$ is continuous and linear. Since $\Phi(\lambda') = \lambda$ and $\Phi(f' d\lambda') = f d\lambda$ ($\lambda \in M(Y)$), $\{f d\mu_{\beta}\}$ converges weakly to $f d\Phi(\mu)$, which establishes the result.

We are now able to prove our main theorem.

THEOREM 4. Let X be a locally compact Hausdorff space such that $\mu \rightarrow f d\mu$ is w.c.c. on M(X) for every $f \in C_0(X)$. Then X is discrete.

PROOF. If $Y \subseteq X$ is compact, then, by Lemma 4, $\mu \rightarrow f d\mu$ is w.c.c. on M(Y) for every $f \in C(Y)$. Hence (Theorem 1), Y is finite. Since X is locally compact Hausdorff, X must be discrete.

It is this result which forms the backbone of our improved version of Wong's characterisation of dual commutative B^* -algebras, which is the equivalence of (i) and (iv) of our next theorem. We note that the condition $A' = A^*$ in (ii) of Theorem 3.2 of [5] is therefore unnecessary. With regard to (iii) we remark that the two Arens products coincide on $C_0(X)^{**}$ [1].

Theorem 5. For a locally compact Hausdorff space X the following are equivalent:

- (i) $C_0(X)$ is a dual algebra;
- (ii) X is discrete;
- (iii) $C_0(X)^*$ is an ideal of $C_0(X)^{**}$ with each Arens product;
- (iv) $\mu \rightarrow f d\mu$ is w.c.c. on M(X) for every $f \in C_0(X)$.

PROOF. The equivalence of (i) and (ii) is Theorem 4.2 of [4]. If (ii) holds, $M(X)=l_1(X)$ [3, p. 3] and we may identify $C_0(X)^*$ with $l_\infty(X)$, which is just C(X). It is clear that the Arens product is the pointwise product in C(X), and so $C_0(X)^*$ is an ideal in $C_0(X)^*$.

We observe that for $f \in C_0(X)$, $\mu \in M(X)$, $f d\mu = \mu * f$ where * is as in Wong's notation [5]. Since Lemma 2.2 of [5] depends only on the fact that if A is a dual B*-algebra then $\pi(A)$ (=A^) is an ideal of A**, a very similar proof shows that (iii) implies (iv).

That (iv) implies (ii) is immediate from Theorem 4, and the proof is complete.

Thus Theorem 4.2 of [5] may be adjusted so that we have, using Wong's notation,

THEOREM 6. If A is a B*-algebra, then A is a dual algebra if and only if for every $x \in A$ the mapping $T_x: f \rightarrow f * x$ is weakly completely continuous on A^* .

REFERENCES

- 1. P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870. MR 26 #622.
- 2. N. Dunford and J. T. Schwartz, *Linear operators*. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 3. E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der math. Wissenschaften, Band 115, Academic Press, New York; Springer-Verlag, Berlin, 1963. MR 28 #158.
- 4. B. J. Tomiuk and P. K. Wong, The Arens product and duality in B*-algebras, Proc. Amer. Math. Soc. 25 (1970), 529-535. MR 41 #4256.
- 5. P. K. Wong, The Arens product and duality in B*-algebras. II, Proc. Amer. Math. Soc. 27 (1971), 535-538. MR 43 #933.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720