THE NORM OF A DERIVATION IN A W^* -ALGEBRA

LÁSZLÓ ZSIDÓ

ABSTRACT. The norm of an inner derivation δ_a of a (non-necessary separable) W^* -algebra M is shown to satisfy

$$\|\delta_a\| = 2\inf\{\|a-z\|; z \in \mathbb{Z}, \text{ the center of } M\},$$

and some related results are obtained.

Let M be an associative algebra. A linear map $\delta: M \to M$ is called a derivation, if $\delta(xy) = x \cdot \delta(y) + \delta(x)y$ for all $x, y \in M$. A derivation δ is inner, if there exists $a \in M$, such that $\delta(x) = ax - xa$, $x \in M$. We denote by δ_a the inner derivation defined by a.

In [7] Sakai has shown that every derivation δ in a W^* -algebra M is inner. Our aim is to find a "good" $a \in M$, such that $\delta = \delta_a$.

More precisely, we prove the following theorems:

THEOREM 1. If Z is the center of M, there exists a unique application $\Phi: M \rightarrow Z$, such that

- (i) $\Phi(za)=z\Phi(a), z\in \mathbb{Z}, a\in M$,
- (ii) $||a \Phi(a)|| = \inf_{z \in \mathbb{Z}} ||a z||, a \in M$.

Furthermore, Φ is continuous in the norm topology.

THEOREM 2. With the notations from Theorem 1,

$$\|\delta_a\| = 2 \cdot \|a - \Phi(a)\|.$$

If δ is a derivation on M, and $a \in M$ is such that $\delta = \delta_a$, then $a - \Phi(a)$ depends only on δ . Put $a(\delta) = a - \Phi(a)$.

THEOREM 3. $\delta \mapsto a(\delta)$ is a continuous mapping of the Banach space of all derivations on M into M, equipped with the norm topology.

These results are proved for the W^* -algebra B(H) of all bounded linear operators in a Hilbert space H by Stampfli [8]. We shall reduce the general problem to this one. Also another result from [8] may be extended for the case of an arbitrary W^* -algebra, using our reduction.

Theorems 1 and 2 imply the following

Received by the editors January 13, 1972.

AMS (MOS) subject classifications (1970). Primary 46L10.

Key words and phrases. W*-algebra, hyperstonean space, derivation.

COROLLARY. If $a \in M$, then

$$\|\delta_a\| = 2\inf_{z \in Z} \|a - z\|.$$

This corollary is proved in [6] for selfadjoint a and in [3] for W^* -algebras with a faithful representation in a separable Hilbert space.

1. Preliminaries for the proofs. Let M be a W^* -algebra, Z its center and Ω the maximal ideal space of Z. For every $t \in \Omega$, denote by [t] the smallest norm-closed two-sided ideal of M containing t. Let M_t be the factor C^* -algebra M/[t] and let x_t denote the image of $x \in M$ in M_t . Glimm proved in [4] that for each $x \in M$ the function $t \mapsto ||x_t||$ is continuous on Ω .

Following a result of Halpern [5], [t] is a primitive ideal for all $t \in \Omega$. Hence every M_t has a faithful irreducible representation Π_t in some Hilbert space H_t . If $a_t \in M_t$, the derivation $\delta_{\Pi_t(a_t)}$ on $\Pi_t M_t$ has a unique extension to a derivation in $B(H_t)$, and these two derivations have equal norms (see for example [1]).

By [8] we have the following lemma:

LEMMA. For $a_t \in M_t$ and a complex number λ_t the following statements are equivalent:

- (i) $||a_t \lambda_t|| = \inf_{\lambda \in C} ||a_t \lambda||$.
- (ii) $||a_t \lambda_t||^2 + |\lambda_t \lambda|^2 \le ||a_t \lambda||^2$ for all $\lambda \in \mathbb{C}$.
- (iii) $\|\delta_{a_t}\| = 2 \cdot \|a_t \lambda_t\|$.

In particular, for every $a_t \in M_t$ there exists a unique $\lambda_t \in C$ such that the above equivalent conditions are satisfied. If $||a_t' - a_t|| \le \varepsilon$ then $|\lambda_t' - \lambda_t| \le \frac{1}{2} (\varepsilon + (\varepsilon^2 + 8\varepsilon ||a_t - \lambda_t||)^{1/2})$.

2. **Proof of Theorems 1 and 2.** Let $a \in M$ and a_t its canonical image in M_t . By the above Lemma, for every $t \in \Omega$ there exists a unique $\lambda_t \in C$ such that the statements of the Lemma hold.

Now, $t\mapsto \|a_t-\lambda_t\|$ is an upper semicontinuous function in Ω . Indeed, if $\alpha>0$ and $\|a_{t_0}-\lambda_{t_0}\|<\alpha$ for some fixed $t_0\in\Omega$, then by Glimm's result there exists a neighborhood V of t_0 , such that, for $t\in V$, $\|a_t-\lambda_{t_0}\|<\alpha$. Hence for $t\in V$, $\|a_t-\lambda_t\|\leq \|a_t-\lambda_{t_0}\|<\alpha$. So $\{t|t\in\Omega, \|a_t-\lambda_t\|<\alpha\}$ is open and the upper semicontinuity of $t\mapsto \|a_t-\lambda_t\|$ is proved.

Since Ω is hyperstonean, there exists an open dense set $D \subseteq \Omega$, such that the restriction of $t \mapsto ||a_t - \lambda_t||$ to D is continuous (see for example [2]).

Let $t_0 \in D$. By the Lemma, for every t,

$$||a_t - \lambda_t||^2 + |\lambda_t - \lambda_{t_0}|^2 \le ||a_t - \lambda_{t_0}||^2.$$

Since t_0 is a continuity point of $t\mapsto \|a_t-\lambda_t\|$, $\lim_{t\to t_0}\|a_t-\lambda_t\| = \|a_{t_0}-\lambda_{t_0}\|$. On the other hand, by Glimm's result, $\lim_{t\to t_0}\|a_t-\lambda_{t_0}\| = \|a_{t_0}-\lambda_{t_0}\|$. Hence $\lim_{t\to t_0}|\lambda_t-\lambda_{t_0}|=0$, that is $t\mapsto \lambda_t$ is continuous in t_0 .

Using again the fact that Ω is hyperstonean, there exists a continuous function f on Ω such that, on an open dense subset of Ω , f is given by $t \mapsto \lambda_t$.

If $t_0 \in \Omega$ is arbitrary, there exists a generalized sequence (t_i) , convergent to t_0 , such that for every $i, f(t_i) = \lambda_{t_i}$. Obviously,

$$||a_{t_i} - f(t_i)|| = ||a_{t_i} - \lambda_{t_i}|| \le ||a_{t_i} - \lambda_{t_0}||.$$

But f is a continuous function on Ω , so it may be considered an element of Z, and by Glimm's result

$$\lim_{i} \|a_{t_{i}} - f(t_{i})\| = \lim_{i} \|(a - f)_{t_{i}}\| = \|(a - f)_{t_{0}}\| = \|a_{t_{0}} - f(t_{0})\|.$$

Again by Glimm's result

$$\lim_{i} \|a_{t_i} - \lambda_{t_0}\| = \|a_{t_0} - \lambda_{t_0}\|.$$

Hence

$$||a_{t_0} - f(t_0)|| \le ||a_{t_0} - \lambda_{t_0}||.$$

The converse inequality is obvious by the Lemma, and the unicity of λ_{t_0} implies $f(t_0) = \lambda_{t_0}$.

In conclusion, $t \mapsto \lambda_t$ is everywhere equal to the continuous function f. Put $\Phi(a)=f$.

Since $\bigcap_{t \in \Omega} [t] = \{0\}$, for every $x \in M$, $||x|| = \sup_{t \in \Omega} ||x_t||$. Now it is easy to verify that Φ satisfies conditions (i) and (ii) of Theorem 1.

If $\Psi: M \to Z$ satisfies the conditions of Theorem 1, and there exists $a \in M$ such that $\Phi(a) \neq \Psi(a)$, then there exists a nonvoid open and closed set $V \subset \Omega$ and $\varepsilon > 0$, such that for $t \in V$, $|\lambda_t - \Psi(a)_t| = |\Phi(a)_t - \Psi(a)_t| \ge \varepsilon$. If $z \in Z$ is the characteristic function of V, by condition (i) and the Lemma,

$$\begin{split} \|az - \Phi(az)\|^2 &= \sup_{t \in V} \|a_t - \lambda_t\|^2 \\ &\leq \sup_{t \in V} (\|a_t - \Psi(a)_t\|^2 - |\lambda_t - \Psi(a)_t|^2) \\ &\leq \|az - \Psi(az)\|^2 - \varepsilon^2 \end{split}$$

in contradiction to condition (ii). Hence $\Psi = \Phi$.

The continuity of Φ results from the last statement of the Lemma.

Finally, if $x \in M$ and $||x|| \le 1$, then for every $t \in \Omega$,

$$\|\delta_a(x)_t\| = \|\delta_a(x_t)\| \le 2 \|a_t - \lambda_t\| \le 2 \|a - \Phi(a)\|.$$

Hence

$$\|\delta_a(x)\| = \sup_t \|\delta_a(x)_t\| \le 2 \|a - \Phi(a)\|,$$

and Theorem 2 is also proved.

3. **Proof of Theorem 3.** Using our construction of Φ , it is easy to see that, for $a \in M$ and $z \in Z$, $\Phi(a+z) = \Phi(a) + z$. This implies that, in fact, $a - \Phi(a)$ depends only on δ_a . Hence $\delta \mapsto a(\delta)$ is well defined.

Let δ' and δ be two derivations on M such that $\|\delta' - \delta\| \le \varepsilon$. By the theorem of Sakai and Theorems 1 and 2 above, there exists $b \in M$, $\|b\| \le \varepsilon/2$ such that $\delta' - \delta = \delta_b$. If $a = a(\delta)$ and a' = a + b, then $\delta = \delta_a$, $\delta' = \delta_{a'}$ and $\|a' - a\| \le \varepsilon/2$. Using the construction of Φ and the Lemma,

$$\|\Phi(a') - \Phi(a)\| \le \frac{1}{4}(\varepsilon + (\varepsilon^2 + 16\varepsilon \|a - \Phi(a)\|)^{1/2})$$

= $\frac{1}{4}(\varepsilon + (\varepsilon^2 + 16\varepsilon \|a(\delta)\|)^{1/2}).$

Hence

$$||a(\delta') - a(\delta)|| \le ||a' - a|| + ||\Phi(a') - \Phi(a)||$$

$$\le \frac{3}{4}\varepsilon + \frac{1}{4}(\varepsilon^2 + 16\varepsilon ||a(\delta)||)^{1/2}.$$

This inequality implies the continuity of $\delta \mapsto a(\delta)$.

PROBLEM. What information about M is given by Φ ?

We remark that Φ is not well understood even in the case M = B(H) (see [8]).

REFERENCES

- 1. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien (Algèbres de von Neumann), 2ième éd., Gauthier-Villars, Paris, 1969.
- 2. ——, Sur certains espaces considérés par M. H. Stone, Summa Brasil Math. 2 (1951), 151-182. MR 14, 69.
 - 3. P. Gajendragadkar, Thesis, Indiana University, Bloomington, Ind., 1970.
- 4. J. G. Glimm, A Stone-Weierstrass theorem for C*-algebras, Ann. of Math. (2) 72 (1960), 216-244. MR 22 #7005.
- 5. H. Halpern, Irreducible module homomorphisms of a von Neumann algebra into its center, Trans. Amer. Math. Soc. 140 (1969), 195-221. MR 39 #3322.
- 6. R. V. Kadison, E. C. Lance and J. R. Ringrose, *Derivations and automorphisms of operator algebras*. II, J. Functional Analysis 1 (1967), 204-221. MR 35 #5954.
- 7. S. Sakai, Derivations of W*-algebras, Ann. of Math. (2) 83 (1966), 273-279. MR 33 #1748.
- 8. J. G. Stampfli, *The norm of a derivation*, Pacific J. Math. 33 (1970), 737-747. MR 42 #861.

INSTITUTE OF MATHEMATICS, ACADEMY OF THE SOCIALIST REPUBLIC OF ROMANIA, CALEA GRIVITEI, 21, BUCHAREST 12, ROMANIA