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QUASI-UNMIXED LOCAL RINGS AND QUASI-SUBSPACES

PETER  G.   SAWTELLE1

Abstract. The concept of a quasi-subspace is defined so that

it plays a role relative to quasi-unmixedness analogous to that of

subspace to unmixedness. This definition is used to characterize

quasi-unmixed local rings.

1. Introduction. In this paper, a ring shall be a commutative ring with

identity. The terminology is basically that of [3] and [9]. In particular, a

semilocal (Noetherian) ring R is called unmixed (resp., quasi-unmixed) in

case depth /? = altitude R, for every prime divisor (resp., minimal prime

divisor)/? of zero in the completion of R.

Proposition 3.3 in [1] gives an example of a local domain A of altitude

two whose integral closure is a convergent power series ring in two

variables over the complex number field, and whose completion A*

contains an imbedded prime divisor of zero. Thus A is not unmixed.

However, by [5, Corollary 3.4(f)], A is quasi-unmixed.2 (This example

answers Problem 1 of [2, p. 62].)

Ratliff [6, §4] characterizes an unmixed local ring R in terms of certain

local rings that contain R as a subspace. This paper parallels [6, §4]; in

particular, the concept of a quasi-subspace is introduced to play a role

relative to quasi-unmixedness analogous to the role played by a subspace

to unmixedness. Since the concepts of unmixedness and quasi-unmixedness

are distinct, the results and techniques below should be of assistance in

investigating quasi-unmixed local rings. The results of this paper and

of [5], [6] have been used in [8] to characterize unmixed and quasi-

unmixed local domains. (Specifically, if 0$ is a particular Rees ring of a

local domain R, then the property that a certain transform ring of ¿ft

is contained in the integral closure of 0t (resp., is Noetherian) is a con-

dition which characterizes (resp., is closely related to) the quasi-unmixed-

ness (resp., unmixedness) of R.)
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2. Preliminary definitions and results.

Definition 1. Let R and S be semilocal rings with completions R*

and S*. R is a quasi-subspace of S if there exists an isolated ideal com-

ponent/* of zero in R* such that/*£rad R* and such that S* dominates

R*jl* and S dominates Rjl, where 1=1* nR.

Note that /*çrad#* implies that /£(rad R*)nR = md R, and so

rad/=rad/?. Also, by letting /* = (0), note that a semilocal ring is a

quasi-subspace of itself and that a semilocal ring that is a subspace of a

semilocal ring S is also a quasi-subspace of S.

Lemma 2 below gives a characterization of quasi-subspace that is

easier to use for the rings considered in §3. Lemma 3 then shows how the

concept of quasi-subspace is related to the minimal prime divisors of

zero of these rings. In particular, Lemma 3 and Corollary 8 give a relation

between quasi-unmixed local rings and the minimal prime divisors of

zero in certain Rees rings of their completions (Corollary 9).

For ease of notation, let Rk denote a polynomial ring in k indeterminants

over a ring R. For the completion R* of R, R*=(R*)k.

Lemma 2. Let (R, M) be a local ring with completion (R*, M*).

Let k^.0, and let yu • • • , yd (d^O) be elements of the total quotient ring

of Rk. Let A = Rk[yi,---,yd] and A*-*î[yu • • •, y¿. Let F* be a

prime ideal in A* such that P*C\R* = M*, and let P=P*C\A. Then, R

is a quasi-subspace of AP if and only if AP* dominates R*/I* for some

isolated ideal component of zero in R* such that /*£ rad R*.

Proof. Let A*>„ dominate /?*//* and /=/*r\R, where /* is given

above. Let K (resp., K*) be the kernel of the natural homomorphism of

A into AP (resp., A* into AP,). Since AP=(A/K)P/K is a dense subspace

of Ap. = (A*IK*)pt/Kt [6, Lemma 3.2], then K=K*C\A. Also, /* =

K*nR*. Therefore, I=KC\R, and so R/I is a subring of AP. Since

PC\R = M [6, Lemma 3.2], AP dominates R/I. Since (AP)* = (AP.)*

[6, Lemma 3.2], and (Ap,)* dominates AP,, then (Ar)* must dominate

R*/I*.
Conversely, let R be a quasi-subspace of AP. Let /* be as in Definition

1, and let K* be as above. Then R*¡I* is a subring of (AP)* = (AP*)*, and

is therefore a subring of AP„. Hence APt dominates R*¡I*, since P*n

R* = M*.    Q.E.D.

Lemma 3 (cf. [6, Lemma 4.5(1)]). Let R, R*, A, A*, P and P* be as

in Lemma 2. Then R is a quasi-subspace of AP if and only if P* contains

all minimal prime divisors of zero in A*.

Proof. Let R be a quasi-subspace of Ap. By Lemma 2, R*/I* is a

subring of AP,, where /* is given in Definition 1. Thus I* = K*f~\R*,
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where K* is given in Lemma 2. Therefore, since K* is an isolated ideal

component of zero in A*, and since A* and R* have the same total

quotient ring, it follows that K* CiR^=I*R*^ (rad R*)R*=rad R*.

Thus (TadK*)nR^=rad(K*nRt)=TadR^, and so rad K*=rad A*.

Hence P* contains every minimal prime ideal in A*.

Conversely, let K* be as above, and define I*=K*C\R*. Then R*/I*

is a subring of AP,. Since P* contains all minimal prime ideals in A*,

radI*=rad(K*nR*) = (radK*)rlR* = (radA*)nR*. Since R* is a

subring of A*, (rad A*)riR* = rad R*.

Also, since K* is an isolated ideal component of zero in A* and since

R* and A* have the same total quotient ring, it follows that /* is an

isolated ideal component of zero in R*. And AP, dominates /?*//*, since

P* n/?* = A/*. Hence, by Lemma 2, R is a quasi-subspace of AP.    Q.E.D.

Remark 4. We give a number of known properties of unmixed and

quasi-unmixed semilocal rings that will be needed in the remainder of the

paper:

(1) R is a quasi-unmixed semilocal ring if and only if R/q is quasi-

unmixed and depth </=altitude R, for every minimal prime divisor q of

zero in R [4, Lemma 2.2].

(2) If R is a quasi-unmixed semilocal ring and P is a prime ideal in R,

then RP is quasi-unmixed [4, Lemma 2.5].

(3) Let R be a semilocal domain. If R is quasi-unmixed and A is a

finitely generated domain over R, then A is locally quasi-unmixed [4,

Corollary 2.5].

(4) Let (R, M) be a local ring. If altitude R=0, or altitude R=l and

M is not a prime divisor of zero, then R is unmixed and, therefore,

quasi-unmixed.

3. Some characterizations of quasi-unmixed local rings. With Lemma

3 and Remark 4, the techniques of [6] can be adapted to prove most of

the following results. The proofs are essentially accomplished by replacing

"subspace" by "quasi-subspace", "unmixed" by "quasi-unmixed",

"prime divisor of zero" by "minimal prime divisor of zero" and "Remark

4.6" by "Remark 4", and by making the appropriate reference changes.

Since the proofs of Corollary 7 and Corollary 8 are entirely analogous to

those in [6], they will be omitted.

Lemma 5 (cf. [6, Lemma 4.5(2)]). Let R, R*,A and A* be as in Lemma2.

Let P be a prime ideal of A such that R is a quasi-subspace of AP. Then

the following statements hold:

(1) P*=PA* is a prime ideal of A* that lies over P, and AP is a dense

subspace of AP,.

(2) R is quasi-unmixed if and only if AP is quasi-unmixed.
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(3) IfQ is a prime ideal of A such that P^Q, then R is a quasi-subspace

ofAQ.

Proof. By the domination of Definition 1, it is straightforward to

show that PC\R=M. (1) then follows by [6, Lemma 3.2]. It will be shown

in Theorem 6(2)(a) that if R is quasi-unmixed, then AP is quasi-unmixed

(even if Ris not a quasi-subspace of AP). The converse of (2) can be shown

by using the quasi-unmixedness of A%*, (1) and Lemma 3 in an adaptation

of the proof in [6]. (3) is easily proved by using Lemma 3.    Q.E.D.

The following theorem is the main result of this paper. It will be applied

(Corollary 8) to characterize a quasi-unmixed ring R in terms of quotient

rings of certain Rees rings of R. Another application to a specific class of

rings is given in Corollary 7.

Theorem 6 (cf. [6, Theorem 4.1]). Let (R, M) be a local ring with

altitude «^0. Then:

(1) R is quasi-unmixed if and only if there exist an integer k, elements

yi> ' ' ' > y a °f the total quotient ring of Rk, and a prime ideal P in A =

-fyctji' ' ' ' > JV/] such that R is a quasi-subspace of AP and AP is quasi-

unmixed.

(2) Let f0,f, ■ ■ ■ ,fd be in Rk (d^.0 and k^.0), where f0 is not a zero

divisor in Rk. Let yi=fi\fn and A=Rk[y1, ■ • • ,yd]. Then the following hold:

(a) If R is quasi-unmixed, then A is locally quasi-unmixed.

(b) If P is aprime ideal in Rk such that (M,f, • ■ • ,fd)Rk^P and such

that /o, • • • ,fd are a subset of a system of parameters in RkP, then PA is

a prime ideal of A, height PA= height P—d, and depth PA= depth P+d.
(c) If R is quasi-unmixed and P is given in (b) then R is a quasi-

subspace of A q, for all prime ideals Q in A such that PA^Q.

Proof. For (1), if R is quasi-unmixed, then the conclusion will follow

from (2). The converse follows by Lemma 5. (2)(b) is proven in [6] and

is stated here for convenience. By using Remark 4, (2)(a) can be proven

by adapting the proof in [6]. By noting that the proof of the fact that

RkP is a dense subspace of /?*p. in [6] is valid if R is quasi-unmixed, (c)

then follows by adapting the remainder of the proof in [6] and using the

lemmas in this paper.    Q.E.D.

Corollary 7 (cf. [6, Corollary 4.8]). Let (R, M) be a local ring of

altitude «5:1. Assume that M is not a prime divisor of zero. Then the

following are equivalent:

(1) R is quasi-unmixed.

(2) There exist analytically independent elements x0, xl5 • • • , xH_1 in

R such that x0 is not a zero-divisor and such that R is a quasi-subspace of

AMA, where A = R[x1/x0, ■ • •, xn_Jx0].
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(3) For every system of parameters x0, • • ■ , xn_x in R such that x0 is

not a zero-divisor, R is a quasi-subspace of AMA, where A is given in (2).

(4) There exists a finitely generated ring A over R such that RçA^T

where T is the total quotient ring of R, and there exists a prime ideal P in A

such that R is a quasi-subspace of AP and AP is quasi-unmixed.

Let B=(b¡, • • ■ , bk)R be an ideal in a Noetherian ring R. Let / be an

indeterminant, and let u=\/t. The Rees ring ¿fi=M(R, B) of R with

respect to B is the ring Oft=R[u, tbx, • ■ • , tbk]. itf is a graded Noetherian

subring of R[u, t\. If (R, M) is a local ring, then J(=(M, u, tbx, • • • , tbk)

is the unique maximal homogeneous ideal of 01 [7, Theorem 3.1, step (ii)].

By [6, Remark 3.10(ii)], if/>,,-• , bk form a system of parameters in the

local ring (R, M), then p= (M, u)M is a height one depth k prime ideal in

0t, and p is the radical of u3? (and so p is the unique height one prime

divisor of u¿%).

The characterization of certain concepts of a ring R via the transition

to a Rees ring has often been useful, and indeed this is the case here.

Corollary 9 and the equivalence of (1) and (4) in Corollary 8 are the main

results of this paper used in [8].

Corollary 8 (cf. [6, Corollary 4.9]). Let (R, M) be a local ring

o/" altitude n^O. The following are equivalent:

(1) R is quasi-unmixed.

(2) There exist an ideal B in R and a prime ideal P of 0t=0l(R, B) such

that R is a quasi-subspace of 0tP and É#P is quasi-unmixed.

(3) There exists an ideal B in R such that 3iJt is quasi-unmixed, where

0t= ¡%(R, B) and Jt is the maximal homogeneous ideal of 01.

(4) For every ideal B of R that is generated by a system of parameters, R

is a quasi-subspace of â#{ilkU)x, where fM=Sft(R, B).

(4') There exists an ideal B of R that is generated by a system of param-

eters such that R is a quasi-subspace of 0&im,u)&, where â#=0?(R, B).

Corollary 9. Let (R, M) be a local ring with completion (R*, M*).

Let B be an M-primary ideal of R that is generated by a system of param-

eters. Let tt#=0?(R, B) and 0t* = @(R*, BR*). Then R is quasi-unmixed

if and only if (M*, u)¿%* contains all minimal prime divisors of zero in 0t*.

Proof.    Use Corollary 8 ((1) and (4')) and Lemma 3.    Q.E.D.
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