QUASI-UNMIXED LOCAL RINGS AND QUASI-SUBSPACES

PETER G. SAWTELLE¹

ABSTRACT. The concept of a quasi-subspace is defined so that it plays a role relative to quasi-unmixedness analogous to that of subspace to unmixedness. This definition is used to characterize quasi-unmixed local rings.

1. **Introduction.** In this paper, a ring shall be a commutative ring with identity. The terminology is basically that of [3] and [9]. In particular, a semilocal (Noetherian) ring R is called *unmixed* (resp., *quasi-unmixed*) in case depth p=altitude R, for every prime divisor (resp., minimal prime divisor) p of zero in the completion of R.

Proposition 3.3 in [1] gives an example of a local domain A of altitude two whose integral closure is a convergent power series ring in two variables over the complex number field, and whose completion A^* contains an imbedded prime divisor of zero. Thus A is not unmixed. However, by [5, Corollary 3.4(i)], A is quasi-unmixed.² (This example answers Problem 1 of [2, p. 62].)

Ratliff [6, §4] characterizes an unmixed local ring R in terms of certain local rings that contain R as a subspace. This paper parallels [6, §4]; in particular, the concept of a quasi-subspace is introduced to play a role relative to quasi-unmixedness analogous to the role played by a subspace to unmixedness. Since the concepts of unmixedness and quasi-unmixedness are distinct, the results and techniques below should be of assistance in investigating quasi-unmixed local rings. The results of this paper and of [5], [6] have been used in [8] to characterize unmixed and quasi-unmixed local domains. (Specifically, if \Re is a particular Rees ring of a local domain R, then the property that a certain transform ring of \Re is contained in the integral closure of \Re (resp., is Noetherian) is a condition which characterizes (resp., is closely related to) the quasi-unmixedness (resp., unmixedness) of R.)

Received by the editors March 21, 1972.

AMS (MOS) subject classifications (1970). Primary 13H10, 13C15; Secondary 13J10.

Key words and phrases. Local ring, unmixed, quasi-unmixed, subspace of a semilocal ring, Rees ring.

¹ This paper is part of the author's doctoral dissertation written at the University of California at Riverside under the direction of Professor Louis J. Ratliff, Jr.

² This example was mentioned to the author by Professor Louis J. Ratliff, Jr.

2. Preliminary definitions and results.

DEFINITION 1. Let R and S be semilocal rings with completions R^* and S^* . R is a quasi-subspace of S if there exists an isolated ideal component I^* of zero in R^* such that $I^* \subseteq \operatorname{rad} R^*$ and such that S^* dominates R^*/I^* and S dominates R/I, where $I = I^* \cap R$.

Note that $I^* \subseteq \operatorname{rad} R^*$ implies that $I \subseteq (\operatorname{rad} R^*) \cap R = \operatorname{rad} R$, and so rad $I = \operatorname{rad} R$. Also, by letting $I^* = (0)$, note that a semilocal ring is a quasi-subspace of itself and that a semilocal ring that is a subspace of a semilocal ring S is also a quasi-subspace of S.

Lemma 2 below gives a characterization of quasi-subspace that is easier to use for the rings considered in §3. Lemma 3 then shows how the concept of quasi-subspace is related to the minimal prime divisors of zero of these rings. In particular, Lemma 3 and Corollary 8 give a relation between quasi-unmixed local rings and the minimal prime divisors of zero in certain Rees rings of their completions (Corollary 9).

For ease of notation, let R_k denote a polynomial ring in k indeterminants over a ring R. For the completion R^* of R, $R_k^* = (R^*)_k$.

LEMMA 2. Let (R, M) be a local ring with completion (R^*, M^*) . Let $k \ge 0$, and let y_1, \dots, y_d $(d \ge 0)$ be elements of the total quotient ring of R_k . Let $A = R_k[y_1, \dots, y_d]$ and $A^* = R_k^*[y_1, \dots, y_d]$. Let P^* be a prime ideal in A^* such that $P^* \cap R^* = M^*$, and let $P = P^* \cap A$. Then, R is a quasi-subspace of A_P if and only if $A_{P^*}^*$ dominates R^*/I^* for some isolated ideal component of zero in R^* such that $I^* \subseteq \operatorname{rad} R^*$.

PROOF. Let A_{P*}^* dominate R^*/I^* and $I=I^*\cap R$, where I^* is given above. Let K (resp., K^*) be the kernel of the natural homomorphism of A into A_P (resp., A^* into A_{P*}^*). Since $A_P=(A/K)_{P/K}$ is a dense subspace of $A_{P*}^*=(A^*/K^*)_{P^*/K^*}$ [6, Lemma 3.2], then $K=K^*\cap A$. Also, $I^*=K^*\cap R^*$. Therefore, $I=K\cap R$, and so R/I is a subring of A_P . Since $P\cap R=M$ [6, Lemma 3.2], A_P dominates R/I. Since $(A_P)^*=(A_{P*}^*)^*$ [6, Lemma 3.2], and $(A_{P*}^*)^*$ dominates A_{P*}^* , then $(A_P)^*$ must dominate R^*/I^* .

Conversely, let R be a quasi-subspace of A_P . Let I^* be as in Definition 1, and let K^* be as above. Then R^*/I^* is a subring of $(A_P)^* = (A_{P^*}^*)^*$, and is therefore a subring of $A_{P^*}^*$. Hence $A_{P^*}^*$ dominates R^*/I^* , since $P^* \cap R^* = M^*$. Q.E.D.

LEMMA 3 (CF. [6, LEMMA 4.5(1)]). Let R, R^* , A, A^* , P and P^* be as in Lemma 2. Then R is a quasi-subspace of A_P if and only if P^* contains all minimal prime divisors of zero in A^* .

PROOF. Let R be a quasi-subspace of A_P . By Lemma 2, R^*/I^* is a subring of $A_{P^*}^*$, where I^* is given in Definition 1. Thus $I^*=K^*\cap R^*$,

where K^* is given in Lemma 2. Therefore, since K^* is an isolated ideal component of zero in A^* , and since A^* and R_k^* have the same total quotient ring, it follows that $K^* \cap R_k^* = I^*R_k^* \subseteq (\operatorname{rad} R^*)R_k^* = \operatorname{rad} R_k^*$. Thus $(\operatorname{rad} K^*) \cap R_k^* = \operatorname{rad}(K^* \cap R_k^*) = \operatorname{rad} R_k^*$, and so $\operatorname{rad} K^* = \operatorname{rad} A^*$. Hence P^* contains every minimal prime ideal in A^* .

Conversely, let K^* be as above, and define $I^*=K^*\cap R^*$. Then R^*/I^* is a subring of $A_{P^*}^*$. Since P^* contains all minimal prime ideals in A^* , rad $I^*=\operatorname{rad}(K^*\cap R^*)=(\operatorname{rad} K^*)\cap R^*=(\operatorname{rad} A^*)\cap R^*$. Since R^* is a subring of A^* , (rad A^*) $\cap R^*=\operatorname{rad} R^*$.

Also, since K^* is an isolated ideal component of zero in A^* and since R_k^* and A^* have the same total quotient ring, it follows that I^* is an isolated ideal component of zero in R^* . And $A_{P^*}^*$ dominates R^*/I^* , since $P^* \cap R^* = M^*$. Hence, by Lemma 2, R is a quasi-subspace of A_P . Q.E.D.

REMARK 4. We give a number of known properties of unmixed and quasi-unmixed semilocal rings that will be needed in the remainder of the paper:

- (1) R is a quasi-unmixed semilocal ring if and only if R/q is quasi-unmixed and depth q=altitude R, for every minimal prime divisor q of zero in R [4, Lemma 2.2].
- (2) If R is a quasi-unmixed semilocal ring and P is a prime ideal in R, then R_P is quasi-unmixed [4, Lemma 2.5].
- (3) Let R be a semilocal domain. If R is quasi-unmixed and A is a finitely generated domain over R, then A is locally quasi-unmixed [4, Corollary 2.5].
- (4) Let (R, M) be a local ring. If altitude R=0, or altitude R=1 and M is not a prime divisor of zero, then R is unmixed and, therefore, quasi-unmixed.
- 3. Some characterizations of quasi-unmixed local rings. With Lemma 3 and Remark 4, the techniques of [6] can be adapted to prove most of the following results. The proofs are essentially accomplished by replacing "subspace" by "quasi-subspace", "unmixed" by "quasi-unmixed", "prime divisor of zero" by "minimal prime divisor of zero" and "Remark 4.6" by "Remark 4", and by making the appropriate reference changes. Since the proofs of Corollary 7 and Corollary 8 are entirely analogous to those in [6], they will be omitted.
- LEMMA 5 (CF. [6, LEMMA 4.5(2)]). Let R, R^* , A and A^* be as in Lemma 2. Let P be a prime ideal of A such that R is a quasi-subspace of A_P . Then the following statements hold:
- (1) $P^* = PA^*$ is a prime ideal of A^* that lies over P, and A_P is a dense subspace of $A_{P^*}^*$.
 - (2) R is quasi-unmixed if and only if A_P is quasi-unmixed.

(3) If Q is a prime ideal of A such that $P \subseteq Q$, then R is a quasi-subspace of A_Q .

PROOF. By the domination of Definition 1, it is straightforward to show that $P \cap R = M$. (1) then follows by [6, Lemma 3.2]. It will be shown in Theorem 6(2)(a) that if R is quasi-unmixed, then A_P is quasi-unmixed (even if R is not a quasi-subspace of A_P). The converse of (2) can be shown by using the quasi-unmixedness of A_{P*}^* , (1) and Lemma 3 in an adaptation of the proof in [6]. (3) is easily proved by using Lemma 3. Q.E.D.

The following theorem is the main result of this paper. It will be applied (Corollary 8) to characterize a quasi-unmixed ring R in terms of quotient rings of certain Rees rings of R. Another application to a specific class of rings is given in Corollary 7.

THEOREM 6 (CF. [6, THEOREM 4.1]). Let (R, M) be a local ring with altitude $n \ge 0$. Then:

- (1) R is quasi-unmixed if and only if there exist an integer k, elements y_1, \dots, y_d of the total quotient ring of R_k , and a prime ideal P in $A = R_k[y_1, \dots, y_d]$ such that R is a quasi-subspace of A_P and A_P is quasi-unmixed.
- (2) Let f_0, f_1, \dots, f_d be in R_k ($d \ge 0$ and $k \ge 0$), where f_0 is not a zero divisor in R_k . Let $y_i = f_i/f_0$ and $A = R_k[y_1, \dots, y_d]$. Then the following hold:
 - (a) If R is quasi-unmixed, then A is locally quasi-unmixed.
- (b) If P is a prime ideal in R_k such that $(M, f_0, \dots, f_d)R_k \subseteq P$ and such that f_0, \dots, f_d are a subset of a system of parameters in R_{kP} , then PA is a prime ideal of A, height PA=height P-d, and depth PA=depth P+d.
- (c) If R is quasi-unmixed and P is given in (b) then R is a quasisubspace of A_0 , for all prime ideals Q in A such that $PA \subseteq Q$.

PROOF. For (1), if R is quasi-unmixed, then the conclusion will follow from (2). The converse follows by Lemma 5. (2)(b) is proven in [6] and is stated here for convenience. By using Remark 4, (2)(a) can be proven by adapting the proof in [6]. By noting that the proof of the fact that R_{kP} is a dense subspace of R_{kP*}^* in [6] is valid if R is quasi-unmixed, (c) then follows by adapting the remainder of the proof in [6] and using the lemmas in this paper. Q.E.D.

COROLLARY 7 (CF. [6, COROLLARY 4.8]). Let (R, M) be a local ring of altitude $n \ge 1$. Assume that M is not a prime divisor of zero. Then the following are equivalent:

- (1) R is quasi-unmixed.
- (2) There exist analytically independent elements x_0, x_1, \dots, x_{n-1} in R such that x_0 is not a zero-divisor and such that R is a quasi-subspace of A_{MA} , where $A = R[x_1/x_0, \dots, x_{n-1}/x_0]$.

- (3) For every system of parameters x_0, \dots, x_{n-1} in R such that x_0 is not a zero-divisor, R is a quasi-subspace of A_{MA} , where A is given in (2).
- (4) There exists a finitely generated ring A over R such that $R \subseteq A \subseteq T$ where T is the total quotient ring of R, and there exists a prime ideal P in A such that R is a quasi-subspace of A_P and A_P is quasi-unmixed.

Let $B = (b_1, \dots, b_k)R$ be an ideal in a Noetherian ring R. Let t be an indeterminant, and let u = 1/t. The Rees ring $\mathcal{R} = \mathcal{R}(R, B)$ of R with respect to B is the ring $\mathcal{R} = R[u, tb_1, \dots, tb_k]$. \mathcal{R} is a graded Noetherian subring of R[u, t]. If (R, M) is a local ring, then $\mathcal{M} = (M, u, tb_1, \dots, tb_k)$ is the unique maximal homogeneous ideal of \mathcal{R} [7, Theorem 3.1, step (ii)]. By [6, Remark 3.10(ii)], if b_1, \dots, b_k form a system of parameters in the local ring (R, M), then $p = (M, u)\mathcal{R}$ is a height one depth k prime ideal in \mathcal{R} , and p is the radical of $u\mathcal{R}$ (and so p is the unique height one prime divisor of $u\mathcal{R}$).

The characterization of certain concepts of a ring R via the transition to a Rees ring has often been useful, and indeed this is the case here. Corollary 9 and the equivalence of (1) and (4) in Corollary 8 are the main results of this paper used in [8].

COROLLARY 8 (CF. [6, COROLLARY 4.9]). Let (R, M) be a local ring of altitude $n \ge 0$. The following are equivalent:

- (1) R is quasi-unmixed.
- (2) There exist an ideal B in R and a prime ideal P of $\mathcal{R} = \mathcal{R}(R, B)$ such that R is a quasi-subspace of \mathcal{R}_P and \mathcal{R}_P is quasi-unmixed.
- (3) There exists an ideal B in R such that $\mathcal{R}_{\mathcal{M}}$ is quasi-unmixed, where $\mathcal{R} = \mathcal{R}(R, B)$ and \mathcal{M} is the maximal homogeneous ideal of \mathcal{R} .
- (4) For every ideal B of R that is generated by a system of parameters, R is a quasi-subspace of $\mathcal{R}_{(M,u)\mathcal{R}}$, where $\mathcal{R} = \mathcal{R}(R,B)$.
- (4') There exists an ideal B of R that is generated by a system of parameters such that R is a quasi-subspace of $\mathcal{R}_{(M,n)\mathscr{R}}$, where $\mathscr{R} = \mathscr{R}(R,B)$.

COROLLARY 9. Let (R, M) be a local ring with completion (R^*, M^*) . Let B be an M-primary ideal of R that is generated by a system of parameters. Let $\mathcal{R} = \mathcal{R}(R, B)$ and $\mathcal{R}^* = \mathcal{R}(R^*, BR^*)$. Then R is quasi-unmixed if and only if $(M^*, u)\mathcal{R}^*$ contains all minimal prime divisors of zero in \mathcal{R}^* .

PROOF. Use Corollary 8 ((1) and (4')) and Lemma 3. Q.E.D.

BIBLIOGRAPHY

- 1. D. Ferrand and M. Raynaud, Fibres formelles d'un anneau local Noethérien, Ann. Sci. École Norm. Sup. (4) 3 (1970), 295-311. MR 42 #7660.
- 2. M. Nagata, On the chain problem of prime ideals, Nagoya Math. J. 10 (1965), 51-64. MR 18, 8.

- 3. M. Nagata, Local rings, Interscience Tracts in Pure and Appl. Math., no. 13, Interscience, New York, 1962. MR 27 #5790.
- 4. L. J. Ratliff, Jr., On quasi-unmixed semi-local rings and the altitude formula, Amer. J. Math. 87 (1965), 278-284. MR 31 #3448.
- 5. ——, On quasi-unmixed local domains, the altitude formula, and the chain condition for prime ideals. I, Amer. J. Math. 91 (1969), 508-528. MR 40 #136.
- 6. —, On quasi-unmixed local domains, the altitude formula, and the chain condition for prime ideals. II, Amer. J. Math. 92 (1970), 99-144. MR 42 #249.
- 7. D. Rees, A-transforms of local rings and a theorem on multiplicities of ideals, Proc. Cambridge Philos. Soc. 57 (1961), 8-17. MR 22 #9521.
- **8.** P. Sawtelle, *Characterizations of unmixed and quasi-unmixed local domains*, Ph.D. Dissertation, University of California at Riverside, Riverside, California, 1971.
- 9. O. Zariski and P. Samuel, *Commutative algebra*. Vol. I, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1958. MR 19, 833.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI-ROLLA, ROLLA, MISSOURI 65401