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RADICALS  AND  BIMODULES

D.   M.   FOSTER

Abstract. In 1964, Andrunakievic and Rjabuhin showed that

the general theory of radicals of associative rings may be presented

in external form in the language of modules. In this paper, we show

that this theory has a natural extension to varieties of algebras

where, in this case, modules are replaced by bimodules. We close

with some examples and a discussion of quadratic Jordan algebras.

1. Introduction and basics. In [2], Andrunakievic and Rjabuhin show

that the general theory of radicals of associative rings may be presented

in external form in the language of modules or, equivalently, representa-

tions. We will show that this theory has a natural extension to varieties of

algebras where, in this case, modules (representations) are replaced by

bimodules (birepresentations). Thus our results are analogous to those

in [2], but do not reduce to them in the variety of associative algebras

since we deal with bimodules.

We assume that the reader is familiar with the notions concerning

varieties of algebras. Specifically, we assume a knowledge of bimodules

and birepresentations. (For informations on varieties and the notation

which we will adopt, see [5].) We also assume that the reader is familiar

with the general theory of radicals of associative rings (for example,

[3, Chapter 1]). We note that, since we have the fundamental homo-

morphism theorems available to us in arbitrary varieties, this general

theory has a natural analogue in varieties.

Throughout this paper, <J? will be a fixed commutative, associative ring

with 1, and the terms "module" and "algebra" will mean "unital left

O-module" and "unital left O-algebra". The notation which we will

adopt is standard.

2. General classes of /-bimodules in a variety V(I). Unless otherwise

stated, in this section, V(I) will be a fixed but arbitrary variety of algebras.

Suppose Ue V(I) and M(U) is the multiplication algebra of U. If

xeU, write (x) = {ax+xF|a 6 <D, Te M(U)}, the principal ideal of U

generated by x. If x, ye U, then easily (x—_y)£(x)+(j) and (xy)£

(x)C\(y). Moreover, if K<\ U and cp is the natural homomorphism from U

Received by the editors January 6, 1972 and, in revised form, April 22, 1972.

AMS (MOS) subject classifications (1970). Primary 17A99; Secondary 17C15.

Key words and phrases. Radical, bimodule, variety, quadratic Jordan algebra.

© American Mathematical Society 1973

47



48 D.  M.  FOSTER [March

onto U/K, then, for x e U, cp((x})={(p(x)). Conversely, if y e U\K and

y 6 <p (y)' then <p((y))=(y)-

Let U g V(I) and suppose M is an /-bimodule for U. If x g U, we set

Mx = {mx | m G M},        JV/(x) = {my | m e M, y e (x)},

xM = {xm | m g M},       (x)M = {ym \ m e M, y e (x)},

[0|M]*7 = {x G U | Mx = xM = 0},

[0^]^ = {x G L/ I M(x) = (x)M = 0).

Note that [0|A/]?> consists of those x g U for which right and left multi-

plication by x on M is zero. Moreover, [0\M]u<\U, and [0|M]ry is the

maximal ideal of [/which is contained in [0|M]u- In the event that, for all

x, y e U, right and left multiplication by xy on M can be written in terms

of right and left multiplications by x and y, then [0|A/]r/ = [0|M]u- Of

course, this is the case for alternative and Lie algebras. However, it is

not the case for Jordan algebras. Indeed, Osborn [9] has given an example

of a Jordan algebra J and a /-bimodule M for which [0|M]j is not an

ideal. We distinguish between [0|M]r/ and [0|A/]u to underline our belief

that both of them must be used if one tries to obtain structural information

about algebras in V(I) via bimodules (for example, see [9]).

Proposition 1. Suppose Ue V(I), K<\U, and D=U/K. If M together

with the bilinear compositions m(a+K) and (a+K)m is an I-bimodule for

D, then, with the bilinear compositions ma=m(a+K) and am=(a+K)m,

M becomes an I-bimodule for U such that K^ [0\M]jj- Conversely, if M

together with the bilinear compositions ma and am is an I-bimodule for U,

and if K^[0\M]*j, then, with the bilinear compositions m(a+K)=ma

and (a+K)m=am, M becomes an I-bimodule for 0 such that [0|A/]j?^

([0\M]tj)IK. If We V(I), W^U, and M is an I-bimodule for U, then M
may be regarded as an I-bimodule for W and [0| A/lu^tOlM]^..

Proof. The proof is an exercise in applying Theorem 9, p. 80 in [5],

and the remarks at the beginning of the section.

Now suppose that for each Ue V(I) there is assigned a (possibly

empty) class S^ of /-bimodules for U. Assume that if We V(I) and

W^U, then Sr7 = SJF. Let S be the set of all E^, and set, for each

Ue V(I), ker(X, <7)=f| {[OIm^MgSr,}, where, if 2^=0, ker(S, U) =
U. If ker(E, U)=U for Ue V(I), we call U 2-radical. If ker(2, U) = 0,
we say that the class Z^ is faithful and that U is S-semisimple.

Following Andrunakievic and Rjabuhin [2], we say S is a general class

of bimodules if the following axioms are satisfied.

(P.0) If MeZrj, then [0\M]u^U.
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(P.l) If K<W, U=U\K, and Me2r, then M, with the induced
/-bimodule structure for U, lies in 2,/.

(P.2) IfMeSp, K<W, Ü=U\K, and ÍT£ [0|M]^, then M, with the
induced /-bimodule structure for D, lies in 2^.

(P.3) If 2^ is faithful, then for each O^AXIt/, 2JC#0.

(P.4) If, for each Q^K<\U, 2/c5¿0, then 2^ is faithful.
Note that if 2 satisfies (P.0)-(P.2), and if K<\Ue V(I), then (P.l) and

(P.2) just say that the admissible /-bimodules for Ü= UjK are precisely

those /-bimodules for U with the property that K^ [0|A/]£r. Thus, from

Proposition 1, ker(2, £/)//£= ker(2, ¿7), whence il//ker(2, U) is 2-semi-

simple.

Lemma 1. Suppose the set S has (P.0)-(P.2). Then, for each Ue V(I),

ker(2, U) coincides with R(U)=f] {T<\U\U¡Tis 1,-semisimple}.

Proof. Easily /?(£/)£ ker(2, U). Conversely, suppose T<]U and

Û=U\T is 2-semisimple. Then ker(2, t/)£ f) {[0\M]r¡\M e Ep, F£

[0|M]6,} = 5. Since S/F=ker(2, <7)=0, 5=F. As Fwas chosen arbitrarily,

ker(2, U)^R(U), as desired.

Theorem 1.    Suppose the set 2 has (P.0)-(P.3).

(1) The class ¿f={U e F(/)|2C7= 0} is a radical class.

(2) If^(U) denotes the ^-radical of U for Ue V(I), then ^(<7)£
ker(2, U).

(3) (P.4) is satisfied iff for all Ue V(I), ̂ (í/) = ker(2, U).

Remark. We observe that (P.3) says that U 2-semisimple implies U

is ^-semisimple, while (P.4) gives the converse (where «^-semisimple

means no nonzero 2-radical ideals).

Proof of Theorem 1. Suppose F(2)={(/e F(/)|there exists Me 2^

such that [0|/V/]r/ = 0}. Note that, by Proposition 1, F(2) is closed under

isomorphisms. If Q^B<\U e F(2), by (P.3), 2^0. Let A/eSB and

A = [0\M]R. By (P.0), A^B whence B=B¡A^0 and M e 2^. Since
[0|M]j3 = 0, B e L(Ii). Thus every nonzero ideal of an algebra in F(2)

can be homomorphically mapped onto a nonzero algebra in ¿(2) from

which it follows that the class £f* = {U e V(I)\ U cannot be homomorph-

ically mapped onto a nonzero member of L(2)} is a radical class. Now if

2^0 for Ue V(I) and MeS^,, then 0j¿Ul[0\M]rj e ¿(2). On the
other hand, if K<Ue V(I) and D=U¡K e L(2), then there is an M e

2,7 with [0|M]p = 0. By (P.l), M e 2r/. From this we can conclude that

To prove (2), we recall that, for Ue V(I), t//ker(2, U) is 2-semi-

simple, hence, by (P.3), .y-semisimple. Since Sf is a radical class, Sf(U)-=

H {T<U\U¡Tis ^-semisimple}£ker(2, U).
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Finally, suppose (P.4) is satisfied. Then U¡¿f(U) being ^-semisimple

implies U\Sf(U) is 2-semisimple. So ker(S, U)^Sr°(U) by Lemma 1.

Conversely, suppose ker(2, U) = Sf(U) and that U is y-semisimple. Then

0=y(C/) = ker(S, U), i.e. U is 2-semisimple.

Remark. The proof of (1) in the above theorem is patterned after

Hentzel's proof in the associative case [4].

Next we show that if we impose an additional condition on V(I), then

we can prove the converse of Theorem 1. Thus we say that V(I) has (*)

if, for every Ue V(I), U*=®l@Ue V(I), i.e. the algebra obtained from

U by adjoining an identity element lies in V(I). This assumption on V(I)

permits us to regard U*\T as an /-bimodule for U for every T<\ U and,

moreover, [0|i/*/T]r7 = T. We remark that if / satisfies conditions (H),

(U), and (L) in the notation of [5] (see [5, Chapter 1, §6]), then V(I) has

(•).
The idea now behind the next theorem is quite simple. If 0 is a radical

property for V(I), then, for Ue V(I), 0>(U)={~\ {T<¡ U\0(U¡T)=O}.

This, together with the assumption that V(I) has (*) will allow us to

characterize 3?(U) as the intersection of the "annihilators" of certain

bimodules.

Theorem 2. Suppose V(I) has (*). If 0 is any radical property for

V(I), then there exists, for each Ue V(I), a set Hu of I-bimodulesfor U

such that 2, the set of all Sp, satisfies (P.0)-(P.4) and such that &>(U) =

ker(2, cO-

Proof. If Ue V(I), set ZU = {M\M is an /-bimodule for U such that

[0M]£^U and 0>(U¡[O\M]U)=O}. Thus, for each jWe^, SP(U) S
[OA/]^ whence 3?(U) S ker(2, U). Since V(I) has (*), M=U*\0(U)

is an /-bimodule for U and [O\M]U = 0>(U), from which we conclude

0>(U)=ker(L, U).

Next we prove that 21 is a general class of /-bimodules. By definition,

(P.0) is satisfied. Note also that, since 0 is preserved under isomorphisms,

if U, We V(I) and Uga W, then 2^ = 2^. From the fact that 0>(U) =

ker(2, U) for all Ue V(I), we have immediately that U is 2-semisimple

iff it is ^-semisimple, and that U is 2-radical iff it is ^-radical. (Note

that ker(2, U)=Uimplies, by (P.0), that 2r/= 0•) From these observa-

tions, (P.3) and (P.4) easily follow. Finally, (P.l) and (P.2) are verified

as follows. Suppose K<\UeV(I) and 0=U[K. Then MG2r7 iff

á2(í7/[0|M](7) = 0. But Dl[0\M]o^ Ul[Q\M]rj whence M e 2^. Thus
(P.l) is satisfied, and (P.2) is verified similarly. So 2 is a general class, as

desired.

Remark.   If M e Y.u, we refer to M as a ^-/-bimodule.
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3. Examples and remarks. Examples of general classes of bimodules

can be easily obtained. One must seek varieties V(I) which have (*) and

examine what radical properties have been studied in them. In this way,

Levitzki bimodules can be defined in those varieties studied by Anderson

[1] and Zwier [12]. Similarly, prime Jordan bimodules can be defined

based upon [11].

As noted at the beginning of the paper, in the variety of associative

algebras, the characterization of a radical in terms of modules and

bimodules need not coincide (even though one-sided modules form a

class of bimodules). For example, the Jacobson radical of an associative

algebra can be characterized as the intersection of the annihilators of the

irreducible one-sided modules, but, as Sasiada's example of a simple

(Jacobson) radical ring illustrates, it need not be equal to the intersection

of the annihilators of the irreducible two-sided modules.

The most important observation, however, is that axioms (P.0)-(P.4)

can be defined in any algebraic system (in the sense of universal algebra)

where there is a meaningful concept of bimodule and birepresentation. If

this is the case, most of the above results carry through to this more

general system.

Such a system is the class of quadratic Jordan algebras (over O) as

defined by McCrimmon (for information regarding terminology, notation,

and basic results in quadratic Jordan algebras, see [6] and [8]). We note

that McCrimmon has a satisfactory definition both for bimodule and

birepresentation [8]. Thus our theory is seen to carry through as far as

Theorem 1, mutatis mutandis. But we also know that if J=(X, U, 2) is a

quadratic Jordan algebra, then / can be embedded in a unital quadratic

Jordan algebra J' = (X', U', 1). We call / nondegenerate if ker(<7')=

{x e X'\U'x—U'x,y=Ç> for a\\ y e X'}=0. We note that if/ has no two-torsion,

then J is nondegenerate [6, p. 1.32]. If we assume our class of quadratic

Jordan algebras is nondegenerate, then our theory carries on through the

analogue of Theorem 2.

We can now combine this result with one of Osborn [9] to answer a

question posed by McCrimmon in [7] regarding the Jacobson radical and

bimodules. In [9], Osborn has given an example showing that the

Jacobson radical of a quadratic Jordan algebra need not equal the inter-

section of the "annihilators" of the irreducible bimodules (in fact, it is

not clear whether or not the class of irreducible bimodules form a general

class). However, based on the above information, if/ is a nondegenerate

quadratic Jordan algebra and R(J) is its Jacobson radical, then R(J) =

H {[0|M]j|A/ is a /-bimodule such that [0|A/]jW and /?(//[0|M]^)=0}.

That is, there is a class of/-bimodules such that R(J) can be represented

as the intersection of the "annihilators" of members of this class.
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