TRANSCENDENTAL EXTENSIONS OF FIELD TOPOLOGIES ON COUNTABLE FIELDS

KLAUS-PETER PODEWSKI

ABSTRACT. Let \mathcal{F} be a field topology on a countable field K and let K(x) be a simple transcendental extension of K. Then there exists a field topology \mathcal{F}' for K(x) such that $\mathcal{F}' \upharpoonright K = \mathcal{F}$.

Let K be a countable field and let $\mathfrak A$ be a fundamental system of neighborhoods at zero. We identify K with the field of constant functions on K and K(x) with the field R(K) of rational functions over K. If D is a non-principal filter on K, then we define for each $U \in \mathfrak A$, U^D to be the set of all $f \in R(K)$ with $\{r \mid f(r) \in U\} \in D$ and $\mathfrak A^D$ to be the set $\{U^D \mid U \in \mathfrak A\}$. $\mathfrak A^D \mid K = \mathfrak A$, and $\mathfrak A^D$ is a filter base. But $\mathfrak A^D$ is not necessarily a fundamental system of neighborhoods at zero of a field topology on R(K).

- 1. DEFINITION. A filter D on K is called \mathfrak{A} -generic, if for each $U \in \mathfrak{A}$ and for each $f \in R(K)$ there is a $V \in \mathfrak{A}$ such that $\{r \mid f(r)V \subseteq U\} \in D$.
- 2. Theorem. If D is a \mathfrak{A} -generic filter on K, then \mathfrak{A}^D is a fundamental system on R(K) such that $\mathfrak{A}^D | K = \mathfrak{A}$.

PROOF. To see that \mathfrak{A}^D defines a group topology on R(K), let $U^D \in \mathfrak{A}^D$ be given. Since \mathfrak{A} is a fundamental system there is a V such that $V - V \subset U$. Suppose $f, g \in V^D$. Then $\{r | f(r) \in V\} \in D$ and $\{r | g(r) \in V\} \in D$. By

$$\{r\big|f(r)-g(r)\in U\}\supset \{r\big|f(r)\in V\}\cap \{r\big|g(r)\in V\}$$

we have that $f-g \in U^D$. Thus $V^D-V^D \subset U^D$.

By a similar argument, it can be seen that inversion and multiplication at zero are continuous. So it remains to show that multiplication is continuous everywhere. Let $f \in R(K)$ and $U^D \in \mathfrak{A}^D$ be given. Since D is \mathfrak{A} -generic there is a V such that $\{r | f(r) \cdot V \subseteq U\} \in D$. Suppose $g \in V^D$. Then $\{r | g(r) \in V\} \in D$.

$${r|g(r)\cdot f(r)\in U}\supset {r|f(r)\cdot V\subset U}\cap {r|g(r)\in V}$$

and therefore $f \cdot g \in U^D$. Thus, multiplication is continuous everywhere. \square

Received by the editors March 2, 1972 and, in revised form, July 26, 1972. AMS (MOS) subject classifications. Primary 12J99.

Under certain conditions one can show that there exists a \mathfrak{A} -generic filter on K.

3. Theorem. If $\mathfrak A$ is a countable fundamental system, then there is a $\mathfrak A$ -generic filter D on K.

PROOF. If $\{0\} \in \mathfrak{A}$, then take D to be the cofinite subsets of K. Otherwise let $(f_n)_{n \in \omega}$ be a well ordering of R(K), $(U_m)_{m \in \omega}$ a well ordering of \mathfrak{A} , and $((n_\alpha, m_\alpha))_{\alpha \in \omega}$ a well ordering of $\omega \times \omega$. By induction over α we choose nonempty open sets 0_α as follows:

Let $0_0 = K$. Assume that 0_α has been chosen. Then there is a $r_\alpha \in 0_\alpha$ and a $V_\alpha \in \mathfrak{A}$, such that $f_{n_\alpha}(r_\alpha)$ is defined and $(f_{n_\alpha}(r_\alpha) + V_\alpha)V_\alpha \subset U_{m_\alpha}$. Because f_{n_α} is continuous at r_α , there exists a $V'_\alpha \in \mathfrak{A}$ such that $f_{n_\alpha}(r_\alpha + V'_\alpha) \subset f_{n_\alpha}(r_\alpha) + V_\alpha$. Define $0_{\alpha+1}$ to be $0_\alpha \cap (r_\alpha + V'_\alpha)$. Thus 0_α has been chosen for every $\alpha \in \omega$. By a straightforward argument, it can be seen that $\{0_\alpha \mid \alpha \in \omega\}$ is a base of a \mathfrak{A} -generic filter. \square

Thus we have shown that every field topology with countable basis on K, can be extended to a field topology on K(x). Moreover, if the topology on K is locally bounded, then the topology on K(x) is locally bounded. To prove that every field topology on K can be extended to a field topology on K(x) we need the following Lemma:

4. Lemma. If $\mathfrak A$ is a fundamental system on K and $U \in \mathfrak A$, then there is a countable fundamental system $\mathfrak A' \subseteq \mathfrak A$ for a field topology with $U \in \mathfrak A'$.

PROOF. Let ϕ_K denote the set of functions φ_d , φ_c , φ_b , and φ_a , $a \in K$, defined by $\varphi_d(V) = V/(1-V)$, $\varphi_c(V) = V \cdot V$, $\varphi_b(V) = V - V$ and $\varphi_a(V) = aV$, for every subset V of K, $1 \notin V$. Let $(\varphi_n)_{n \in \omega}$ be a well ordering of ϕ_K and $((n_\alpha, m_\alpha))_{\alpha \in \omega}$ a well ordering of $\omega \times \omega$ such that $\alpha \geq m_\alpha$.

By induction over α we choose sets $U_{\alpha} \in \mathfrak{A}$. Let $U_0 = U$. Assume that U_0, \dots, U_{α} have been chosen from \mathfrak{A} . Because \mathfrak{A} is a fundamental system, there is a $V \in \mathfrak{A}$ such that $\varphi_{n_{\alpha}}(V) \subset U_{m_{\alpha}}$ and $V \subset U_{\alpha}$. Let $U_{\alpha+1}$ be such a V. Thus U_{α} is well defined for $\alpha \in \omega$. It is straightforward to see that $\{U_{\alpha} | \alpha \in \omega\}$ is a fundamental system, which contains U and is a subset of \mathfrak{A} .

5. THEOREM. If \mathcal{F} is a field topology on K, then there is a field topology \mathcal{F}' on K(x) such that $\mathcal{F}' \upharpoonright K = \mathcal{F}$.

PROOF. Let $\mathfrak A$ be a fundamental system of neighborhoods at zero of $\mathscr T$. By Lemma 4 there is a set $\{\mathfrak A_U | U \in \mathfrak A\}$ of countable fundamental systems such that $\bigcup \{\mathfrak A_U | U \in \mathfrak A\} = \mathfrak A$. From Theorem 3, we see that for each $U \in \mathfrak A$ there is an $\mathfrak A_U$ -generic filter D_U . By Theorem 2 we have that $\mathfrak A_U^D v$ is a fundamental system on K(x) such that $\mathfrak A_U^D v \setminus K = \mathfrak A_U$. Hence, $\bigcup \{\mathfrak A_U^D v \mid U \in \mathfrak A\}$ is a subbase for a fundamental system $\mathfrak A^*$ on K(x) such

that $\mathfrak{A}^* | K = \mathfrak{A}$. If we take \mathscr{T}' to be the field topology defined by \mathfrak{A}^* , then \mathscr{T}' has the desired properties.

REFERENCE

1. L. A. Hinrichs, The existence of topologies on field extensions, Trans. Amer. Math. Soc. 113 (1964), 397-405. MR 30 #91.

INSTITUT FÜR MATHEMATIK, TECHNISCHE UNIVERSITÄT HANNOVER, WELFENGARTEN 1, HANNOVER, WEST GERMANY