A CLASS OF FLAG TRANSITIVE PLANES ## M. L. NARAYANA RAO ABSTRACT. A class of translation affine planes of order q^2 , where q is a power of a prime $p \ge 3$ is constructed. These planes have an interesting property that their collineation groups are flag transitive. - 1. Introduction. Let π be a finite affine plane of order n. A collineation group G of π is defined to be flag transitive on π if G is transitive on the incident point-line pairs, or flags, of π . A. Wagner [7] has shown that π is a translation plane so that $n=p^r$ for some prime p and for some integer r>0. D. A. Foulser [3], [4] has determined all flag transitive groups of finite affine planes. While determining the flag transitive groups Foulser remarks that the existence of non-Desarguesian flag transitive affine planes is still an open problem. However he constructs two flag transitive planes [4] of order 25 and shows that his two planes of order 25 and the near field plane of order 9 have flag transitive collineation groups. C. Hering [5] has constructed a plane of order 27 which has a flag transitive group. Recently the author [6] has constructed a plane of order 49 and has shown that it has a flag transitive group. The aim of this paper is to construct a class of non-Desarguesian affine translation planes of order q^2 , where q is a power of a prime $p \ge 3$, which have flag transitive collineation groups. - 2. Let $n=p^f$, where p is a prime and f is a positive integer. Let V be a vector space of dimension 2f over GF(p). Let $\{V_i|0\leq i\leq n\}$ be a set of f-dimensional subspaces of V. Let π be an incidence structure defined with vectors of V as points of π and subspaces V_i and their cosets (in the additive group of the vector space V) as lines of π with inclusion as an incidence relation. It may be shown (Andre [1]) that the incidence structure π is an affine (translation) plane if $V_i \cap V_j = \{0\}$, the subspace of V consisting of the zero vector alone, for $i \neq j$, $0 \leq i \leq n$, $0 \leq j \leq n$. Further any linear transformation of V, which permutes the subspaces V_i among themselves induces a collineation of π fixing the point corresponding to the zero Received by the editors May 6, 1971 and, in revised form, August 31, 1972. AMS (MOS) subject classifications (1970). Primary 20B25, 50D35; Secondary 20N10, 05B25. Key words and phrases. Projective planes, affine planes, flag transitivity, Veblen-Wedderburn systems. vector. It can be shown that π is flag transitive if there exists a group of linear transformations of V which permutes transitively the subspaces V_i for $0 \le i \le n$. 3. Construction of a class of affine planes. Let α be a generator of the group of nonzero elements of $GF(q^4)$, where q is a power of a prime $p \ge 3$. Let β be the generator of the group of nonzero elements of GF(q) given by $\beta = \alpha^{(q^2+1)(q+1)}$. Throughout this paper we use d in place of the number (q+1). Since the element α^d lies outside $GF(q^2)$, it satisfies an equation $$(3.1) f(x) = x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0,$$ where the coefficients a_i are from GF(q) and the polynomial f(x) is irreducible in GF(q). Using the relations between the roots and the coefficients of equation (3.1) one may obtain the following: $$(3.2) a_0 = \beta^2,$$ $$(3.3) a_1 = \beta a_3,$$ $$(3.4) a_3 \neq 0,$$ $$(3.5) a_2 + 2\beta + (\beta \alpha^{-d} + \alpha^d)a_3 + (\alpha^d - \beta \alpha^{-d})^2 = 0,$$ (3.6) $$a_3 + (\alpha^d + \beta \alpha^{-d}) + (\alpha^d + \beta \alpha^{-d})^q = 0,$$ (3.7) $$a_2 = 2\beta + (\beta \alpha^{-d} + \alpha^d)^d.$$ The relations (3.2), (3.3) and (3.7) are easy to verify. Using (3.2) and (3.3) in the relation (3.8) $$\alpha^{4d} + a_3 \alpha^{3d} + a_2 \alpha^{2d} + a_1 \alpha^d + a_0 = 0$$ we obtain (3.5). The relation (3.6) is a consequence of (3.5) and (3.7). To prove (3.4) let us suppose that $a_3=0$. Then (3.8) becomes $$(3.8)' \alpha^{4d} + a_2 \alpha^{2d} + \beta^2 = 0.$$ The relation (3.8)' implies that α^{2d} satisfies a quadratic in GF(q), a contradiction since α^{2d} does not belong to $GF(q^2)$. Hence $a_3 \neq 0$. LEMMA 3.1. Let $u=(a_2+2\beta)a_3^{-1}+\beta\alpha^{-d}+\alpha^d$. Then $u\in GF(q^2)$ and is not a square in $GF(q^2)$. Consequently it may be expressed as $u=\alpha^{s(q^2+1)}$, where s is a certain odd integer. PROOF. From the relation $$(3.9) (a + b\alpha^d)^{q^2+1} = a^2 + b^2\beta + ab(\beta\alpha^{-d} + \alpha^d),$$ where $a, b \in GF(q)$ and $a \neq 0 \neq b$, we obtain that $(\beta \alpha^{-d} + \alpha^d)$ is an element in $GF(q^2)$. Consequently $u \in GF(q^2)$. Suppose that u is a square in $GF(q^2)$. The relation (3.5) may now be written as $$(3.10) (\alpha^d - \beta \alpha^{-d})^2 = -a_3 u.$$ Since any element of GF(q) is a square in $GF(q^2)$, we obtain from (3.10) that $(\alpha^d - \beta \alpha^{-d})^2$ is a square in $GF(q^2)$ and consequently $(\alpha^d - \beta \alpha^{-d}) \in GF(q^2)$. This together with the fact that $(\beta \alpha^{-d} + \alpha^d) \in GF(q^2)$ leads to a contradiction that $\alpha^d \in GF(q^2)$. Thus $u \in GF(q^2)$ and u is not a square in $GF(q^2)$. Since u is not a square in $GF(q^2)$, u may be expressed as $u = \alpha^{s(q^2+1)}$ where s is a certain odd integer. LEMMA 3.2. Let $v=(a_2+2\beta)^2a_3^{-2}-4\beta$. Then v is not a square in GF(q). PROOF. Let $(a_2+2\beta)a_3^{-1}=g$, $(\beta\alpha^{-d}+\alpha^d)=h$. We obtain from Lemma 3.1 that $\alpha^{s(q^2+1)}=(g+h)$ and therefore $(g+h)^d=\beta^s$ is not a square in GF(q), since s is an odd integer. However, using the relations (3.6) and (3.7) we obtain that $$(g + h)^{d} = (g + h^{q})(g + h)$$ $$= g^{2} + g(h^{q} + h) + h^{d}$$ $$= g^{2} + a_{2} - 2\beta + g(h^{q} + h)$$ $$= g^{2} - 4\beta + g(a_{3} + h + h^{q})$$ $$= g^{2} - 4\beta.$$ Hence the lemma. Let V_0 be the vector space over GF(q) defined by the basis $\{1, \alpha^d\}$. Let ν and δ be linear transformations of $GF(q^d)$ defined by $$v: x \to x \alpha^{2d}$$ and $\delta: x \to x^q \alpha^k$ with $k \equiv s \pmod{d}$, where s is the odd integer of Lemma 3.1. Let π be the incidence structure whose points are the vectors of $V = GF(q^4)$ and whose lines are the images of V_0 under the group $H = \langle v, \delta \rangle$ of linear transformations and their cosets in the additive group of $GF(q^4)$, with inclusion as an incidence relation. Theorem 3.1. The incidence structure π is a non-Desarguesian affine translation plane. Further the group H of linear transformations induces a group of collineations of π which fixes the origin and permutes the lines through the origin transitively. In the course of the proof of Theorem 3.1 we need the following two lemmas. Let $0 \neq x = a + b\alpha^d$ and $y = (b + \beta^{-1}a\alpha^d)$ be elements from V_0 , where $a, b \in GF(q)$. From the relation $$(3.11) (xy^{-1})^{q^2+1} = \beta$$ we obtain that (3.12) $$xy^{-1} = \alpha^{d+t(q^2-1)} = \alpha^{k_x d}$$ for some integer t and therefore k_x is an odd integer, a function of x. LEMMA 3.3. Let $0 \neq x = a + b\alpha^d$, $y = (b + \beta^{-1}a\alpha^d)$ and z be elements of V_0 where $a, b \in GF(q)$ and $xz^{-1} \notin GF(q)$. Then $x = z\alpha^{cd}$ for some integer c if and only if (i) z = ly for some $l \in GF(q)$ and (ii) $l\alpha^{cd} = \alpha^{k_x d}$. Further if $x = z\alpha^{cd}$, then c is an odd integer. PROOF. Obviously (i) and (ii) imply that $x=z\alpha^{cd}$ for some integer c and $z=e+f\alpha^d$. Suppose that $x=z\alpha^{cd}$ for some integer c and $z=e+f\alpha^d$. Obviously $z\neq 0$. From the relation $x^{q^2+1}=z^{q^2+1}\beta^c$ we obtain, after using the fact that 1, α^{-d} , α^d are linearly independent over GF(q), $$(3.13) ab = ef\beta^c,$$ (3.14) $$a^2 + b^2 \beta = (e^2 + f^2 \beta) \beta^c.$$ Eliminating β^c from (3.13) and (3.14) we have (3.15) $$(\beta bf - ae)(be - af) = 0.$$ Since $xz^{-1} \notin GF(q)$, $be-af \neq 0$. We therefore have that $\beta bf-ae=0$ from which we obtain that $z=l(b+\beta^{-1}a\alpha^d)$ for some $l \in GF(q)$. The condition (ii) now follows easily. Since $l\alpha^{cd}=\alpha^{k_xd}$, where k_x is an odd integer, we have that c also is an odd integer. LEMMA 3.4. Let $M = \{xy\alpha^{ld} | x, y \in V_0, x \neq 0 \neq y, l \text{ an integer}\}$. Then $\alpha^m \notin M$ where $m \equiv s \pmod{d}$ and $\alpha^{s(q^2+1)} = u$ of Lemma 3.1. PROOF. Let $x=a+b\alpha^d$ and $y=e+f\alpha^d$, where $a, b, e, f \in GF(q)$. Suppose that $xy\alpha^{ld}=\alpha^{s+td}$ for some integers l and t. Then $$(3.16) (xy)^{q^2+1}\beta^{l-t} = u$$ using the relations (3.2), (3.3) and (3.8) in (3.16) we obtain $$\beta^{-t+1}((\beta bf + ae)^{2} + \beta(b^{2}e^{2} + a^{2}f^{2}) - abefa_{2})$$ $$(3.17) + \beta^{1-t}((\beta bf + ae)(be + af) - abefa_{3})(\beta \alpha^{-d} + \alpha^{d})$$ $$= (a_{2} + 2\beta)a_{3}^{-1} + \beta \alpha^{-d} + \alpha^{d}.$$ Since 1 and $(\beta \alpha^{-d} + \alpha^d)$ are linearly independent over GF(q) we obtain, from (3.17), (3.18) $$\beta^{l-t}((\beta bf + ae)^2 + \beta(b^2e^2 + a^2f^2) - abefa_2) = (a_2 + 2\beta)a_3^{-1},$$ (3.19) $$\beta^{l-t}((\beta bf + ae)(be + af) - abefa_3) = 1.$$ Eliminating β^{l-t} from (3.18) and (3.19) we obtain (3.20) $$(\beta bf + ae)^2 - (a_2 + 2\beta)a_3^{-1}(\beta bf + ae)(be + af) + \beta(be + af)^2$$ $$= 0.$$ Suppose be+af=0. Then $\beta bf+ae=0$. If we further suppose that any one of a, b, e, f vanishes, then we obtain that either x=0 or y=0, contrary to the hypothesis. Thus in case be+af=0, we have $a\neq 0\neq b, e\neq 0\neq f$. Eliminating a and b from be+af=0 and $\beta bf+ae=0$ we obtain $\beta=e^2f^{-2}$, a square in GF(q), a contradiction. Thus $be+af\neq 0$. Equation (3.20) may now be written as $$(3.21) w^2 - (a_2 + 2\beta)a_3^{-1}w + \beta = 0,$$ where $w = (\beta bf + ae)(be + af)^{-1}$. Since $((a_2 + 2\beta)^2 a_3^{-2} - 4\beta)$ is not a square in GF(q), the relation (3.21) leads to a contradiction that w satisfies a quadratic irreducible in GF(q). From this contradiction we infer the truth of the lemma. PROOF OF THEOREM 3.1. Let V_i be the vector space over GF(q) generated by $\{\alpha^{2id}, \alpha^{(2i+1)d}\}$ for $0 \le i \le (q^2-1)/2$. Obviously V_i is the image of V_0 under the linear transformation v^i of $GF(q^4)$. Let U_i be the vector space over GF(q) generated by $\{\alpha^{k+d(q+2i)}, \alpha^{k+2id}\}$ for $0 \le i \le (q^2-1)/2$. As before it may be shown that U_0 is the image of V_0 under the linear transformation δ and U_i is the image of U_0 under the linear transformation v^i of $GF(q^4)$. Further from the relation $$(a\alpha^{2id} + b\alpha^{(2i+1)d})\delta = \alpha^{2iqd}(a\alpha^k + b\alpha^{k+qd}),$$ where $a, b \in GF(q)$, we obtain that $V_i \delta = U_j$ where $iq \equiv j \pmod{(q^2+1)/2}$. Similarly from the relation $$(a\alpha^{k+2id} + b\alpha^{k+(2i+q)d})\delta = \alpha^{(2iqd)+(k-1)d}(b\beta + a\alpha^d)$$ we obtain that $U_i \delta = V_j$, where $iq + (k-1)/2 \equiv j \pmod{(q^{2+1})/2}$. Thus the set P of images of V_0 under the group $H = \langle v, \delta \rangle$ of linear transformations of $GF(q^4)$ consists of V_i and U_j for $0 \le i \le (q^2-1)/2$ and $0 \le j \le (q^2-1)/2$ and H is transitive on the set P. We may now conclude that, if π is an affine plane, then H induces a collineation group which fixes the origin and permutes the lines through the origin transitively. To prove that π is an affine plane we have to show that $X_i \cap Y_j = \{0\}$ if $X_i \neq Y_j$ and X = U or V and Y = U or V, $0 \leq i \leq (q^2 - 1)/2$, $0 \leq j \leq (q^2 - 1)/2$. Without loss of generality we may suppose $i \leq j$. Then from the relations $(X_i \cap Y_j)v^{-i} = X_0 \cap Y_{j-i}$ and $(U_i \cap U_j)\delta^{-1} = V_0 \cap V_{j-i}$ we have that (3.22) $$X_i \cap Y_j = \{0\}$$ if and only if $X_0 \cap Y_{j-i} = \{0\}$, (3.23) $$U_i \cap U_j = \{0\}$$ if and only if $V_0 \cap V_{j-i} = \{0\}$. In view of (3.22) and (3.23) it is enough if we show that $$(3.24) V_0 \cap V_i = \{0\} \text{for } 0 \le i \le (q^2 - 1)/2,$$ (3.25) $$V_0 \cap U_i = \{0\} \text{ for } 0 \le i \le (q^2 - 1)/2.$$ Obviously V_0 , V_i , U_j contain the zero vector. To prove (3.24) let us suppose $x \in V_0$, $y \in V_i$, with $x \neq 0 \neq y$ and x = y. Then there is a $z \in V_0$ such that $y = z\alpha^{2id}$ and consequently $x = z\alpha^{2id}$. This in view of Lemma 3.3 leads to a contradiction that 2i is an odd integer, since $xz^{-1} \notin GF(q)$. Suppose $0 \neq x \in V_0$ and $0 \neq y \in U_i$ and x = y. Then there is a $z \neq 0$ in U_0 such that $y = z\alpha^{2id}$. Let $z = (e + f\alpha^{qd})\alpha^k$ where $e, f \in GF(q)$. Then $e + f\alpha^{qd} = (e + f\alpha^d)^q = (e + f\alpha^d)^{-1}(e + f\alpha^d)^d$. Let $e + f\alpha^d = \alpha^t$. Now x = y implies that $x(e + f\alpha^d) = \alpha^{k+td+2id}$ contrary to Lemma 3.4. Thus π is an affine plane. Obviously $A = \langle \alpha^{2d} \rangle$ induces a group of collineations of π and its order is $(q^2+1)(q-1)/2$. Suppose T is an odd prime which divides (q^4-1) but does not divide (p^i-1) for 0 < i < 4r (such a prime exists in view of Corollary 2, p. 358 of Artin [2]). Obviously T is not a factor of 2(q+1). Otherwise we obtain a contradiction that $q^2 \equiv 1 \pmod{T}$. It then follows that T is a factor of $(q^2+1)(q-1)/2$, the order of A and satisfies conditions (2) and (3) of Lemma 3.1 of Foulser [4]. We now claim that V_0 is not of the form $A(GF(q^2))$ for any $a \neq 0$ from $GF(q^4)$. Suppose the contrary. Then if $b \neq 0$ and bV_0 , it follows that $b^{-1}V_0 = GF(q^2)$ and it may be shown that it is not the case by taking $b = \alpha^d$ and noting that $\alpha^{-d} \notin GF(q^2)$. We now invoke Lemma 6.1 of Foulser [4] to claim that π is non-Desarguesian. This completes the proof of the theorem. Classification of these planes into nonisomorphic classes will be discussed elsewhere. ## REFERENCES - 1. J. André, Über nicht-Desarguesche Ebenen mit transitiver Translationsgruppe, Math. Z. 60 (1954), 156-186. MR 16, 64. - 2. E. Artin, *The orders of linear groups*, Comm. Pure Appl. Math. 8 (1955), 355-366. MR 17, 12. - 3. D. A. Foulser, The flag-transitive collineation groups of the finite Desarguesian affine planes, Canad. J. Math. 16 (1964), 443-472. MR 29 #3549. - **4.** —, Solvable flag transitive affine groups, Math. Z. **86** (1964), 191-204. MR **30** #1190. - 5. C. Hering, Eine nicht-desarguesche zweifach transitive affine Ebene der Ordnung 27, Abh. Math. Sem. Univ. Hamburg 34 (1969/70), 203-208. MR 42 #8390. - 6. M. L. Narayana Rao, A flag transitive plane of order 49, Proc. Amer. Math. Soc. 32 (1972), 256-262. - 7. A. Wagner, On finite affine line transitive planes, Math. Z. 87 (1965), 1-11. MR 30 #2391. DEPARTMENT OF MATHEMATICS, OSMANIA UNIVERSITY, HYDERABAD-7 (A.P.), INDIA