## A CLASS OF FLAG TRANSITIVE PLANES

## M. L. NARAYANA RAO

ABSTRACT. A class of translation affine planes of order  $q^2$ , where q is a power of a prime  $p \ge 3$  is constructed. These planes have an interesting property that their collineation groups are flag transitive.

- 1. Introduction. Let  $\pi$  be a finite affine plane of order n. A collineation group G of  $\pi$  is defined to be flag transitive on  $\pi$  if G is transitive on the incident point-line pairs, or flags, of  $\pi$ . A. Wagner [7] has shown that  $\pi$ is a translation plane so that  $n=p^r$  for some prime p and for some integer r>0. D. A. Foulser [3], [4] has determined all flag transitive groups of finite affine planes. While determining the flag transitive groups Foulser remarks that the existence of non-Desarguesian flag transitive affine planes is still an open problem. However he constructs two flag transitive planes [4] of order 25 and shows that his two planes of order 25 and the near field plane of order 9 have flag transitive collineation groups. C. Hering [5] has constructed a plane of order 27 which has a flag transitive group. Recently the author [6] has constructed a plane of order 49 and has shown that it has a flag transitive group. The aim of this paper is to construct a class of non-Desarguesian affine translation planes of order  $q^2$ , where q is a power of a prime  $p \ge 3$ , which have flag transitive collineation groups.
- 2. Let  $n=p^f$ , where p is a prime and f is a positive integer. Let V be a vector space of dimension 2f over GF(p). Let  $\{V_i|0\leq i\leq n\}$  be a set of f-dimensional subspaces of V. Let  $\pi$  be an incidence structure defined with vectors of V as points of  $\pi$  and subspaces  $V_i$  and their cosets (in the additive group of the vector space V) as lines of  $\pi$  with inclusion as an incidence relation. It may be shown (Andre [1]) that the incidence structure  $\pi$  is an affine (translation) plane if  $V_i \cap V_j = \{0\}$ , the subspace of V consisting of the zero vector alone, for  $i \neq j$ ,  $0 \leq i \leq n$ ,  $0 \leq j \leq n$ . Further any linear transformation of V, which permutes the subspaces  $V_i$  among themselves induces a collineation of  $\pi$  fixing the point corresponding to the zero

Received by the editors May 6, 1971 and, in revised form, August 31, 1972.

AMS (MOS) subject classifications (1970). Primary 20B25, 50D35; Secondary 20N10, 05B25.

Key words and phrases. Projective planes, affine planes, flag transitivity, Veblen-Wedderburn systems.

vector. It can be shown that  $\pi$  is flag transitive if there exists a group of linear transformations of V which permutes transitively the subspaces  $V_i$  for  $0 \le i \le n$ .

3. Construction of a class of affine planes. Let  $\alpha$  be a generator of the group of nonzero elements of  $GF(q^4)$ , where q is a power of a prime  $p \ge 3$ . Let  $\beta$  be the generator of the group of nonzero elements of GF(q) given by  $\beta = \alpha^{(q^2+1)(q+1)}$ . Throughout this paper we use d in place of the number (q+1). Since the element  $\alpha^d$  lies outside  $GF(q^2)$ , it satisfies an equation

$$(3.1) f(x) = x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0,$$

where the coefficients  $a_i$  are from GF(q) and the polynomial f(x) is irreducible in GF(q). Using the relations between the roots and the coefficients of equation (3.1) one may obtain the following:

$$(3.2) a_0 = \beta^2,$$

$$(3.3) a_1 = \beta a_3,$$

$$(3.4) a_3 \neq 0,$$

$$(3.5) a_2 + 2\beta + (\beta \alpha^{-d} + \alpha^d)a_3 + (\alpha^d - \beta \alpha^{-d})^2 = 0,$$

(3.6) 
$$a_3 + (\alpha^d + \beta \alpha^{-d}) + (\alpha^d + \beta \alpha^{-d})^q = 0,$$

(3.7) 
$$a_2 = 2\beta + (\beta \alpha^{-d} + \alpha^d)^d.$$

The relations (3.2), (3.3) and (3.7) are easy to verify. Using (3.2) and (3.3) in the relation

(3.8) 
$$\alpha^{4d} + a_3 \alpha^{3d} + a_2 \alpha^{2d} + a_1 \alpha^d + a_0 = 0$$

we obtain (3.5). The relation (3.6) is a consequence of (3.5) and (3.7). To prove (3.4) let us suppose that  $a_3=0$ . Then (3.8) becomes

$$(3.8)' \alpha^{4d} + a_2 \alpha^{2d} + \beta^2 = 0.$$

The relation (3.8)' implies that  $\alpha^{2d}$  satisfies a quadratic in GF(q), a contradiction since  $\alpha^{2d}$  does not belong to  $GF(q^2)$ . Hence  $a_3 \neq 0$ .

LEMMA 3.1. Let  $u=(a_2+2\beta)a_3^{-1}+\beta\alpha^{-d}+\alpha^d$ . Then  $u\in GF(q^2)$  and is not a square in  $GF(q^2)$ . Consequently it may be expressed as  $u=\alpha^{s(q^2+1)}$ , where s is a certain odd integer.

PROOF. From the relation

$$(3.9) (a + b\alpha^d)^{q^2+1} = a^2 + b^2\beta + ab(\beta\alpha^{-d} + \alpha^d),$$

where  $a, b \in GF(q)$  and  $a \neq 0 \neq b$ , we obtain that  $(\beta \alpha^{-d} + \alpha^d)$  is an element in  $GF(q^2)$ . Consequently  $u \in GF(q^2)$ . Suppose that u is a square in  $GF(q^2)$ .

The relation (3.5) may now be written as

$$(3.10) (\alpha^d - \beta \alpha^{-d})^2 = -a_3 u.$$

Since any element of GF(q) is a square in  $GF(q^2)$ , we obtain from (3.10) that  $(\alpha^d - \beta \alpha^{-d})^2$  is a square in  $GF(q^2)$  and consequently  $(\alpha^d - \beta \alpha^{-d}) \in GF(q^2)$ . This together with the fact that  $(\beta \alpha^{-d} + \alpha^d) \in GF(q^2)$  leads to a contradiction that  $\alpha^d \in GF(q^2)$ . Thus  $u \in GF(q^2)$  and u is not a square in  $GF(q^2)$ . Since u is not a square in  $GF(q^2)$ , u may be expressed as  $u = \alpha^{s(q^2+1)}$  where s is a certain odd integer.

LEMMA 3.2. Let  $v=(a_2+2\beta)^2a_3^{-2}-4\beta$ . Then v is not a square in GF(q).

PROOF. Let  $(a_2+2\beta)a_3^{-1}=g$ ,  $(\beta\alpha^{-d}+\alpha^d)=h$ . We obtain from Lemma 3.1 that  $\alpha^{s(q^2+1)}=(g+h)$  and therefore  $(g+h)^d=\beta^s$  is not a square in GF(q), since s is an odd integer. However, using the relations (3.6) and (3.7) we obtain that

$$(g + h)^{d} = (g + h^{q})(g + h)$$

$$= g^{2} + g(h^{q} + h) + h^{d}$$

$$= g^{2} + a_{2} - 2\beta + g(h^{q} + h)$$

$$= g^{2} - 4\beta + g(a_{3} + h + h^{q})$$

$$= g^{2} - 4\beta.$$

Hence the lemma.

Let  $V_0$  be the vector space over GF(q) defined by the basis  $\{1, \alpha^d\}$ . Let  $\nu$  and  $\delta$  be linear transformations of  $GF(q^d)$  defined by

$$v: x \to x \alpha^{2d}$$
 and  $\delta: x \to x^q \alpha^k$ 

with  $k \equiv s \pmod{d}$ , where s is the odd integer of Lemma 3.1. Let  $\pi$  be the incidence structure whose points are the vectors of  $V = GF(q^4)$  and whose lines are the images of  $V_0$  under the group  $H = \langle v, \delta \rangle$  of linear transformations and their cosets in the additive group of  $GF(q^4)$ , with inclusion as an incidence relation.

Theorem 3.1. The incidence structure  $\pi$  is a non-Desarguesian affine translation plane. Further the group H of linear transformations induces a group of collineations of  $\pi$  which fixes the origin and permutes the lines through the origin transitively.

In the course of the proof of Theorem 3.1 we need the following two lemmas.

Let  $0 \neq x = a + b\alpha^d$  and  $y = (b + \beta^{-1}a\alpha^d)$  be elements from  $V_0$ , where  $a, b \in GF(q)$ . From the relation

$$(3.11) (xy^{-1})^{q^2+1} = \beta$$

we obtain that

(3.12) 
$$xy^{-1} = \alpha^{d+t(q^2-1)} = \alpha^{k_x d}$$

for some integer t and therefore  $k_x$  is an odd integer, a function of x.

LEMMA 3.3. Let  $0 \neq x = a + b\alpha^d$ ,  $y = (b + \beta^{-1}a\alpha^d)$  and z be elements of  $V_0$  where  $a, b \in GF(q)$  and  $xz^{-1} \notin GF(q)$ . Then  $x = z\alpha^{cd}$  for some integer c if and only if (i) z = ly for some  $l \in GF(q)$  and (ii)  $l\alpha^{cd} = \alpha^{k_x d}$ . Further if  $x = z\alpha^{cd}$ , then c is an odd integer.

PROOF. Obviously (i) and (ii) imply that  $x=z\alpha^{cd}$  for some integer c and  $z=e+f\alpha^d$ . Suppose that  $x=z\alpha^{cd}$  for some integer c and  $z=e+f\alpha^d$ . Obviously  $z\neq 0$ . From the relation  $x^{q^2+1}=z^{q^2+1}\beta^c$  we obtain, after using the fact that 1,  $\alpha^{-d}$ ,  $\alpha^d$  are linearly independent over GF(q),

$$(3.13) ab = ef\beta^c,$$

(3.14) 
$$a^2 + b^2 \beta = (e^2 + f^2 \beta) \beta^c.$$

Eliminating  $\beta^c$  from (3.13) and (3.14) we have

(3.15) 
$$(\beta bf - ae)(be - af) = 0.$$

Since  $xz^{-1} \notin GF(q)$ ,  $be-af \neq 0$ . We therefore have that  $\beta bf-ae=0$  from which we obtain that  $z=l(b+\beta^{-1}a\alpha^d)$  for some  $l \in GF(q)$ . The condition (ii) now follows easily. Since  $l\alpha^{cd}=\alpha^{k_xd}$ , where  $k_x$  is an odd integer, we have that c also is an odd integer.

LEMMA 3.4. Let  $M = \{xy\alpha^{ld} | x, y \in V_0, x \neq 0 \neq y, l \text{ an integer}\}$ . Then  $\alpha^m \notin M$  where  $m \equiv s \pmod{d}$  and  $\alpha^{s(q^2+1)} = u$  of Lemma 3.1.

PROOF. Let  $x=a+b\alpha^d$  and  $y=e+f\alpha^d$ , where  $a, b, e, f \in GF(q)$ . Suppose that  $xy\alpha^{ld}=\alpha^{s+td}$  for some integers l and t. Then

$$(3.16) (xy)^{q^2+1}\beta^{l-t} = u$$

using the relations (3.2), (3.3) and (3.8) in (3.16) we obtain

$$\beta^{-t+1}((\beta bf + ae)^{2} + \beta(b^{2}e^{2} + a^{2}f^{2}) - abefa_{2})$$

$$(3.17) + \beta^{1-t}((\beta bf + ae)(be + af) - abefa_{3})(\beta \alpha^{-d} + \alpha^{d})$$

$$= (a_{2} + 2\beta)a_{3}^{-1} + \beta \alpha^{-d} + \alpha^{d}.$$

Since 1 and  $(\beta \alpha^{-d} + \alpha^d)$  are linearly independent over GF(q) we obtain, from (3.17),

(3.18) 
$$\beta^{l-t}((\beta bf + ae)^2 + \beta(b^2e^2 + a^2f^2) - abefa_2) = (a_2 + 2\beta)a_3^{-1},$$

(3.19) 
$$\beta^{l-t}((\beta bf + ae)(be + af) - abefa_3) = 1.$$

Eliminating  $\beta^{l-t}$  from (3.18) and (3.19) we obtain

(3.20) 
$$(\beta bf + ae)^2 - (a_2 + 2\beta)a_3^{-1}(\beta bf + ae)(be + af) + \beta(be + af)^2$$
$$= 0.$$

Suppose be+af=0. Then  $\beta bf+ae=0$ . If we further suppose that any one of a, b, e, f vanishes, then we obtain that either x=0 or y=0, contrary to the hypothesis. Thus in case be+af=0, we have  $a\neq 0\neq b, e\neq 0\neq f$ . Eliminating a and b from be+af=0 and  $\beta bf+ae=0$  we obtain  $\beta=e^2f^{-2}$ , a square in GF(q), a contradiction. Thus  $be+af\neq 0$ . Equation (3.20) may now be written as

$$(3.21) w^2 - (a_2 + 2\beta)a_3^{-1}w + \beta = 0,$$

where  $w = (\beta bf + ae)(be + af)^{-1}$ . Since  $((a_2 + 2\beta)^2 a_3^{-2} - 4\beta)$  is not a square in GF(q), the relation (3.21) leads to a contradiction that w satisfies a quadratic irreducible in GF(q). From this contradiction we infer the truth of the lemma.

PROOF OF THEOREM 3.1. Let  $V_i$  be the vector space over GF(q) generated by  $\{\alpha^{2id}, \alpha^{(2i+1)d}\}$  for  $0 \le i \le (q^2-1)/2$ . Obviously  $V_i$  is the image of  $V_0$  under the linear transformation  $v^i$  of  $GF(q^4)$ . Let  $U_i$  be the vector space over GF(q) generated by  $\{\alpha^{k+d(q+2i)}, \alpha^{k+2id}\}$  for  $0 \le i \le (q^2-1)/2$ . As before it may be shown that  $U_0$  is the image of  $V_0$  under the linear transformation  $\delta$  and  $U_i$  is the image of  $U_0$  under the linear transformation  $v^i$  of  $GF(q^4)$ . Further from the relation

$$(a\alpha^{2id} + b\alpha^{(2i+1)d})\delta = \alpha^{2iqd}(a\alpha^k + b\alpha^{k+qd}),$$

where  $a, b \in GF(q)$ , we obtain that  $V_i \delta = U_j$  where  $iq \equiv j \pmod{(q^2+1)/2}$ . Similarly from the relation

$$(a\alpha^{k+2id} + b\alpha^{k+(2i+q)d})\delta = \alpha^{(2iqd)+(k-1)d}(b\beta + a\alpha^d)$$

we obtain that  $U_i \delta = V_j$ , where  $iq + (k-1)/2 \equiv j \pmod{(q^{2+1})/2}$ . Thus the set P of images of  $V_0$  under the group  $H = \langle v, \delta \rangle$  of linear transformations of  $GF(q^4)$  consists of  $V_i$  and  $U_j$  for  $0 \le i \le (q^2-1)/2$  and  $0 \le j \le (q^2-1)/2$  and H is transitive on the set P. We may now conclude that, if  $\pi$  is an affine plane, then H induces a collineation group which fixes the origin and permutes the lines through the origin transitively.

To prove that  $\pi$  is an affine plane we have to show that  $X_i \cap Y_j = \{0\}$  if  $X_i \neq Y_j$  and X = U or V and Y = U or V,  $0 \leq i \leq (q^2 - 1)/2$ ,  $0 \leq j \leq (q^2 - 1)/2$ . Without loss of generality we may suppose  $i \leq j$ . Then from the relations  $(X_i \cap Y_j)v^{-i} = X_0 \cap Y_{j-i}$  and  $(U_i \cap U_j)\delta^{-1} = V_0 \cap V_{j-i}$  we have that

(3.22) 
$$X_i \cap Y_j = \{0\}$$
 if and only if  $X_0 \cap Y_{j-i} = \{0\}$ ,

(3.23) 
$$U_i \cap U_j = \{0\}$$
 if and only if  $V_0 \cap V_{j-i} = \{0\}$ .

In view of (3.22) and (3.23) it is enough if we show that

$$(3.24) V_0 \cap V_i = \{0\} \text{for } 0 \le i \le (q^2 - 1)/2,$$

(3.25) 
$$V_0 \cap U_i = \{0\} \text{ for } 0 \le i \le (q^2 - 1)/2.$$

Obviously  $V_0$ ,  $V_i$ ,  $U_j$  contain the zero vector. To prove (3.24) let us suppose  $x \in V_0$ ,  $y \in V_i$ , with  $x \neq 0 \neq y$  and x = y. Then there is a  $z \in V_0$  such that  $y = z\alpha^{2id}$  and consequently  $x = z\alpha^{2id}$ . This in view of Lemma 3.3 leads to a contradiction that 2i is an odd integer, since  $xz^{-1} \notin GF(q)$ . Suppose  $0 \neq x \in V_0$  and  $0 \neq y \in U_i$  and x = y. Then there is a  $z \neq 0$  in  $U_0$  such that  $y = z\alpha^{2id}$ . Let  $z = (e + f\alpha^{qd})\alpha^k$  where  $e, f \in GF(q)$ . Then  $e + f\alpha^{qd} = (e + f\alpha^d)^q = (e + f\alpha^d)^{-1}(e + f\alpha^d)^d$ . Let  $e + f\alpha^d = \alpha^t$ . Now x = y implies that  $x(e + f\alpha^d) = \alpha^{k+td+2id}$  contrary to Lemma 3.4. Thus  $\pi$  is an affine plane.

Obviously  $A = \langle \alpha^{2d} \rangle$  induces a group of collineations of  $\pi$  and its order is  $(q^2+1)(q-1)/2$ . Suppose T is an odd prime which divides  $(q^4-1)$  but does not divide  $(p^i-1)$  for 0 < i < 4r (such a prime exists in view of Corollary 2, p. 358 of Artin [2]). Obviously T is not a factor of 2(q+1). Otherwise we obtain a contradiction that  $q^2 \equiv 1 \pmod{T}$ . It then follows that T is a factor of  $(q^2+1)(q-1)/2$ , the order of A and satisfies conditions (2) and (3) of Lemma 3.1 of Foulser [4]. We now claim that  $V_0$  is not of the form  $A(GF(q^2))$  for any  $a \neq 0$  from  $GF(q^4)$ . Suppose the contrary. Then if  $b \neq 0$  and  $bV_0$ , it follows that  $b^{-1}V_0 = GF(q^2)$  and it may be shown that it is not the case by taking  $b = \alpha^d$  and noting that  $\alpha^{-d} \notin GF(q^2)$ . We now invoke Lemma 6.1 of Foulser [4] to claim that  $\pi$  is non-Desarguesian. This completes the proof of the theorem.

Classification of these planes into nonisomorphic classes will be discussed elsewhere.

## REFERENCES

- 1. J. André, Über nicht-Desarguesche Ebenen mit transitiver Translationsgruppe, Math. Z. 60 (1954), 156-186. MR 16, 64.
- 2. E. Artin, *The orders of linear groups*, Comm. Pure Appl. Math. 8 (1955), 355-366. MR 17, 12.
- 3. D. A. Foulser, The flag-transitive collineation groups of the finite Desarguesian affine planes, Canad. J. Math. 16 (1964), 443-472. MR 29 #3549.
- **4.** —, Solvable flag transitive affine groups, Math. Z. **86** (1964), 191-204. MR **30** #1190.
- 5. C. Hering, Eine nicht-desarguesche zweifach transitive affine Ebene der Ordnung 27, Abh. Math. Sem. Univ. Hamburg 34 (1969/70), 203-208. MR 42 #8390.
- 6. M. L. Narayana Rao, A flag transitive plane of order 49, Proc. Amer. Math. Soc. 32 (1972), 256-262.
- 7. A. Wagner, On finite affine line transitive planes, Math. Z. 87 (1965), 1-11. MR 30 #2391.

DEPARTMENT OF MATHEMATICS, OSMANIA UNIVERSITY, HYDERABAD-7 (A.P.), INDIA