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A CLASS OF FLAG TRANSITIVE PLANES
M. L. NARAYANA RAO

ABSTRACT. A class of translation affine planes of order ¢2,
where ¢ is a power of a prime p=3 is constructed. These planes
have an interesting property that their collineation groups are flag
transitive.

1. Introduction. Let 7 be a finite affine plane of order n. A collineation
group G of = is defined to be flag transitive on = if G is transitive on the
incident point-line pairs, or flags, of . A. Wagner [7] has shown that =
is a translation plane so that n=p" for some prime p and for some integer
r>0. D. A. Foulser [3], [4] has determined all flag transitive groups of
finite affine planes. While determining the flag transitive groups Foulser
remarks that the existence of non-Desarguesian flag transitive affine
planes is still an open problem. However he constructs two flag transitive
planes [4] of order 25 and shows that his two planes of order 25 and the
near field plane of order 9 have flag transitive collineation groups. C.
Hering [5] has constructed a plane of order 27 which has a flag transitive
group. Recently the author [6] has constructed a plane of order 49 and
has shown that it has a flag transitive group. The aim of this paper is to
construct a class of non-Desarguesian affine translation planes of order
q*%, where q is a power of a prime p=3, which have flag transitive collinea-
tion groups.

2. Let n=p’, where p is a prime and fis a positive integer. Let V' be a
vector space of dimension 2f over GF(p). Let {V,|0<i=<n} be a set of
f-dimensional subspaces of V. Let 7 be an incidence structure defined with
vectors of ¥V as points of 77 and subspaces ¥V, and their cosets (in the addi-
tive group of the vector space V) as lines of 7 with inclusion as an incidence
relation. It may be shown (Andre [1]) that the incidence structure = is
an affine (translation) plane if V;NV;={0}, the subspace of ¥ consisting
of the zero vector alone, for i#j, 0= i=n, 0= j=n. Further any linear
transformation of ¥, which permutes the subspaces ¥; among themselves
induces a collineation of = fixing the point corresponding to the zero
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vector. It can be shown that = is flag transitive if there exists a group of
linear transformations of ¥ which permutes transitively the subspaces
V, for 0=i=n.

3. Construction of a class of affine planes. Let « be a generator of the
group of nonzero elements of GF(¢*), where ¢ is a power of a prime p=3.
Let f be the generator of the group of nonzero elements of GF(g) given by
B=a'@+D@D) Throughout this paper we use d in place of the number
(g+1). Since the element o? lies outside GF(¢?), it satisfies an equation

3.D f(x) = x* 4+ a3x® + a,x% + a;x + a,,

where the coefficients a; are from GF(q) and the polynomial f(x) is
irreducible in GF(g). Using the relations between the roots and the
coefficients of equation (3.1) one may obtain the following:

(3.2) a, = p?,

(3.3) a, = Pas,

(3.4 a; # 0,

(3.5 ay + 28 + (Ba? + aY)ag + (a! — fu?)* =0,
(3-6) ag + (o + fo?) + («* + fu=?)? =0,
3.7 a, =28 + (B + 9.

The relations (3.2), (3.3) and (3.7) are easy to verify. Using (3.2) and (3.3)
in the relation

(3.8) o + q.0%¢ + a0 + a0+ a, =0

we obtain (3.5). The relation (3.6) is a consequence of (3.5) and (3.7). To
prove (3.4) let us suppose that a;=0. Then (3.8) becomes

3.8 o + a0 + 2 = 0.

The relation (3.8)" implies that «?* satisfies a quadratic in GF(g), a con-
tradiction since «?? does not belong to GF(¢?%). Hence a;7%0.

LeMMA 3.1. Let u=(ay+2f)a;" +Bo—?+al. Then u e GF(q?) and is not
a square in GF(g%). Consequently it may be expressed as u=as@"+V where
s is a certain odd integer.

ProoF. From the relation
(3.9) (@ + bad)™1 = g + b28 + ab(fo—? + af),

where a, b € GF(g) and a5#05£b, we obtain that (fa—*+a?) is an element
in GF(¢?). Consequently u € GF(q?). Suppose that u is a square in GF(g?).
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The relation (3.5) may now be written as
(3.10) (a? — Ba%)? = —asu.

Since any element of GF(g) is a square in GF(¢?%), we obtain from (3.10)
that (a?—pBa?)? is a square in GF(¢?) and consequently («*—pa%) €
GF(g%. This together with the fact that (Ba—?+a%) eGF(g?) leads to a
contradiction that «% € GF(¢g?). Thus u € GF(¢? and « is not a square in
GF(g?). Since u is not a square in GF(¢?), # may be expressed as u= "+
where s is a certain odd integer.

LEMMA 3.2. Let v=(a,+2B)*as*—4p. Then v is not a square in GF(g).

PROOF. Let (a,42B)az =g, (Bu?+a?)=h. We obtain from Lemma
3.1 that a*@+V=(g+h) and therefore (g+h)?=p* is not a square in
GF(g), since s is an odd integer. However, using the relations (3.6) and
(3.7) we obtain that

(g+n'=@E+hrE+h
=gi4 g+ h) + 1
=gt+a,— 28+ ght + h)
=g —4f+gla+h+h)

=g? —4p.
Hence the lemma.
Let V, be the vector space over GF(q) defined by the basis {1, «%}. Let
v and 6 be linear transformations of GF(g*) defined by

v:ix —xa2 and 0:x — x%*

with k=s (mod d), where s is the odd integer of Lemma 3.1. Let = be the
incidence structure whose points are the vectors of ¥=GF(¢*) and whose
lines are the images of ¥, under the group H=(», §) of linear transforma-
tions and their cosets in the additive group of GF(g%), with inclusion as
an incidence relation.

THEOREM 3.1. The incidence structure m is a non-Desarguesian affine
translation plane. Further the group H of linear transformations induces a
group of collineations of = which fixes the origin and permutes the lines
through the origin transitively.

In the course of the proof of Theorem 3.1 we need the following two
lemmas.

Let 0#x=a+boa® and y=(b+p'ax?) be elements from V,, where
a, b € GF(g). From the relation

(3.11) (xy )i+ = B
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we obtain that
(3.12) xy = R e \ e
for some integer ¢ and therefore k, is an odd integer, a function of x.

LemMaA 3.3. Let 0#x=a+bo’, y=(b+p'ax’) and z be elements of V,
where a, b € GF(q) and xz7' ¢ GF(q). Then x=za*® for some integer c if
and only if (i) z=ly for some I € GF(q) and (ii) la**=o*=%. Further if x=
za®, then c is an odd integer.

PrOOF. Obviously (i) and (ii) imply that x=z«*® for some integer ¢
and z=e+fa®. Suppose that x=za*® for some integer ¢ and z=e+fu’.
Obviously z7#0. From the relation x?*+!=z7"+1§° we obtain, after using the
fact that 1, o=, «? are linearly independent over GF(g),

(3.13) ab = eff’,

(3.19) a + b = (¢ + f2H)p".
Eliminating §° from (3.13) and (3.14) we have
(3.15) (Bbf — ae)(be — af) = 0.

Since xz7! ¢ GF(q), be—af#0. We therefore have that gbf—ae=0 from
which we obtain that z=/(b+pf'ax?) for some / € GF(q). The condition
(ii) now follows easily. Since la**=0o*=?, where k, is an odd integer, we
have that c also is an odd integer.

LEMMA 3.4. Let M={xy«d¥|x, y € V,, x#05y,[ an integer}. Then
a™ ¢ M where m=s (mod d) and a*@+ =y of Lemma 3.1.

Proor. Let x=a+ba® and y=e+fu?, where a, b, e, feGF(q).
Suppose that xya!?=as+* for some integers / and ¢. Then

(3.16) (xy) 1t = u
using the relations (3.2), (3.3) and (3.8) in (3.16) we obtain
BH(BS + ae)® + B(b%¢® + a’f*) — abefa,)

(3.17) + BU(BYf + ae)(be + af) — abefas)(Ba + a)
= (as + 2B)az” + fo* + o".

Since 1 and (Ba—?+ o) are linearly independent over GF(g) we obtain, from
(3.17),

(3.18)  BH((BEf + ae)* + B(b® + a*f?) — abefa,) = (ay + 2P)a5",
(3.19) B—((Bbf + ae)(be + af) — abefay) = 1.
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Eliminating 5*~* from (3.18) and (3.19) we obtain

(Bbf + ae)* — (ay + 2B)as”" (Bbf + ae)(be + af) + P(be + af )
= 0.

Suppose be+af=0. Then fbf+ae=0. If we further suppose that any one of
a, b, e, f vanishes, then we obtain that either x=0 or y=0, contrary to the
hypothesis. Thus in case be+af=0, we have a07#b, e£05f. Eliminating
a and b from be+af=0 and Bbf+ae=0 we obtain f=e* 2, a square in
GF(g), a contradiction. Thus be+af7#0. Equation (3.20) may now be
written as

(3.21) w? — (ap + 2B)az'w + B =0,

where w=(Bbf+ae)(be+af)". Since ((a;+2p)*a5°—4p) is not a square
in GF(q), the relation (3.21) leads to a contradiction that w satisfies a
quadratic irreducible in GF(g). From this contradiction we infer the truth
of the lemma.

ProOF OF THEOREM 3.1.  Let V be the vector space over GF(g) generated
by {«?®, a2+14} for 0=<i=(q%?—1)/2, Obviously V; is the image of V,
under the linear transformation »* of GF(gq%). Let U, be the vector space
over GF(g) generated by {a*+3(a+2) o*+24} for 0</=<(q%—1)/2. As before
it may be shown that U, is the image of ¥, under the linear transformation
d and U, is the image of U, under the linear transformation »* of GF(g*).
Further from the relation

(ao?® 4+ pal?itDd)§ = ¢2id(gok + hoted),

where a, b € GF(g), we obtain that V;0=U; where ig=j(mod(g?+1)/2).
Similarly from the relation

(a(xk+2id + bak+(2i+q)d)6 = a(2iqd)+(k——1)d(bﬂ + aad)

we obtain that U, 0=V;, where ig+(k—1)/2=j (mod(g**!)/2). Thus the
set P of images of ¥, under the group H=(», 8) of linear transformations
of GF(¢*) consists of ¥, and U; for 0=i=(q*—1)/2 and 0= j=<(q*—1)/2
and H is transitive on the set P. We may now conclude that, if = is an
affine plane, then H induces a collineation group which fixes the origin
and permutes the lines through the origin transitively.

To prove that = is an affine plane we have to show that X;NY;=
{0} if X; Y, and X=U or V and Y=U or V, 0=i=Z(¢?2—1)/2, 0=j=
(¢2—1)/2. Without loss of generality we may suppose i< j. Then from the
relations (X;NYwi=X,NY,_; and (U;NU)61=V,NV;_; we have
that

(3.20)

(3.22) X; N Y;={0} ifandonlyif X, N Y,_, = {0},
(3.23) U, nNnU;={0} ifand onlyif ¥y N V;_, = {0}.
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In view of (3.22) and (3.23) it is enough if we show that
(3.29) VonNV,={0} for0=i=(q%—1)2
(3.25) Vo NU; ={0} for0=i=(q%— 1)2.

Obviously ¥V, V;, U; contain the zero vector. To prove (3.24) let us
suppose x € Vy, y € V;, with x#05y and x=y. Then there is a ze ¥V,
such that y=z«*? and consequently x=za?¢. This in view of Lemma 3.3
leads to a contradiction that 2i is an odd integer, since xz* ¢ GF(g).
Suppose 07#x € ¥, and 0y € U; and x=y. Then there is a z5£0 in U,
such that y=za%4. Let z=(e+fx®®)a* where e, f € GF(g). Then e+fat=
(et+foet)?=(e+fa?)(e+fx%)?. Let e+fu’=a'. Now x=y implies that
x(e+fa%)=ak+t4+24 contrary to Lemma 3.4. Thus = is an affine plane.

Obviously 4=(«??) induces a group of collineations of 7 and its order is
(¢2+1)(g—1)/2. Suppose T'is an odd prime which divides (¢*—1) but does
not divide (p*—1) for 0<i<4r (such a prime exists in view of Corollary 2,
p- 358 of Artin [2]). Obviously 7 is not a factor of 2(g+1). Otherwise we
obtain a contradiction that g?>=1(mod T). It then follows that T is a
factor of (¢2+1)(¢—1)/2, the order of 4 and satisfies conditions (2) and
(3) of Lemma 3.1 of Foulser [4]. We now claim that V, is not of the
form A(GF(q%) for any a0 from GF(g*). Suppose the contrary. Then
if b#0 and bV, it follows that 5-1V;=GF(q?) and it may be shown that
it is not the case by taking b=a? and noting that «— ¢ GF(¢?). We now
invoke Lemma 6.1 of Foulser [4] to claim that = is non-Desarguesian.
This completes the proof of the theorem.

Classification -of these planes into nonisomorphic classes will be
discussed elsewhere.
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