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A CLASS OF FLAG TRANSITIVE PLANES

M.   L.   NARAYANA   RAO

Abstract. A class of translation affine planes of order q2,

where q is a power of a prime/>>3 is constructed. These planes

have an interesting property that their collineation groups are flag

transitive.

1. Introduction. Let -n be a finite affine plane of order n. A collineation

group G of 77 is defined to be flag transitive on 77 if G is transitive on the

incident point-line pairs, or flags, of 77. A. Wagner [7] has shown that 77

is a translation plane so that n=pr for some prime/? and for some integer

r>0. D. A. Foulser [3], [4] has determined all flag transitive groups of

finite affine planes. While determining the flag transitive groups Foulser

remarks that the existence of non-Desarguesian flag transitive affine

planes is still an open problem. However he constructs two flag transitive

planes [4] of order 25 and shows that his two planes of order 25 and the

near field plane of order 9 have flag transitive collineation groups. C.

Hering [5] has constructed a plane of order 27 which has a flag transitive

group. Recently the author [6] has constructed a plane of order 49 and

has shown that it has a flag transitive group. The aim of this paper is to

construct a class of non-Desarguesian affine translation planes of order

q2, where <7 is a power of a primep^3, which have flag transitive collinea-

tion groups.

2. Let n=pf, where p is a prime and/is a positive integer. Let F be a

vector space of dimension 2/over GF(p). Let {K¿|0^/'^n} be a set of

/-dimensional subspaces of V. Let 77 be an incidence structure defined with

vectors of V as points of 77 and subspaces K, and their cosets (in the addi-

tive group of the vector space V) as lines of 77 with inclusion as an incidence

relation. It may be shown (Andre [1]) that the incidence structure 77 is

an affine (translation) plane if K¿nF3 = {0}, the subspace of F consisting

of the zero vector alone, for iytj, 0^ i^n, O^j^n. Further any linear

transformation of V, which permutes the subspaces Vt among themselves

induces a collineation of 77 fixing the point corresponding to the zero
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vector. It can be shown that 77 is flag transitive if there exists a group of

linear transformations of V which permutes transitively the subspaces

Vt for 0<:i<:n.

3. Construction of a class of affine planes. Let a be a generator of the

group of nonzero elements of GF(<74), where q is a power of a prime /?^3.

Let ß be the generator of the group of nonzero elements ofGF(^r) given by

ß=xiqt+Wt+1). Throughout this paper we use d in place of the number

(q+l). Since the element ad lies outsideGF(^2), it satisfies an equation

(3.1) /(x) = x4 + a3x3 + a2x2 + ^x + a0,

where the coefficients ai are from GY(q) and the polynomial f(x) is

irreducible in GF(q). Using the relations between the roots and the

coefficients of equation (3.1) one may obtain the following:

(3.2) a0 = ß2,

(3.3) ai = ßa3,

(3.4) a3 * 0,

(3.5) a2 + 2/5 + (ßoi-d + ad)a3 + (ad - ßa~d)2 = 0,

(3.6) a3 + (ad + ßa~d) + (aá + ßoL~d)q = 0,

(3.7) a2 = 2ß + (ßz-d + ad)d.

The relations (3.2), (3.3) and (3.7) are easy to verify. Using (3.2) and (3.3)

in the relation

(3.8) <x4d + a3a.3d + a2a.2d + a^ + a0 = 0

we obtain (3.5). The relation (3.6) is a consequence of (3.5) and (3.7). To

prove (3.4) let us suppose that a3=0. Then (3.8) becomes

(3.8)' <x4d + a2a.2d + ß2 = 0.

The relation (3.8)' implies that a2á satisfies a quadratic in GF(q), a con-

tradiction since a2d does not belong toGF(^2). Hence 03^0.

Lemma 3.1. Let u=(a2+2ß)a3l+ßa.-d + <xa. Then u e G¥{q2) and is not

a square in GV(q2). Consequently it may be expressed as u=a.siq +1), where

s is a certain odd integer.

Proof.    From the relation

(3.9) (a + Z>a<y+1 = a2 + b2ß + ab(ß«rd ■+ ad),

where a, beGF(^r) and a^O^b, we obtain that (ßa.~d + oLd) is an element

inGF(<72). Consequently u eGF(q2). Suppose that u is a square inGF,(¡72).
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The relation (3.5) may now be written as

(3.10) (ad - ßord)2 = -a3u.

Since any element ofGF(^) is a square inGF(<¡r2), we obtain from (3.10)

that (a.d—ßard)2 is a square in GF(q2) and consequently (<xd—ßar4) e

GF(q2). This together with the fact that (ßard-\-a.d) eGF(q2) leads to a

contradiction that xdeGF(q2). Thus weGF(^) and u is not a square in

GF(^2). Since u is not a square inGF(<72), u may be expressed as u=txsiQ +1)

where j is a certain odd integer.

Lemma 3.2.   Let v = (a2+2ß)2a32 —Aß. Then v is not a square in GF(q).

Proof. Let (a2+2ß)a3~1—g, (ßard + a.d)=h. We obtain from Lemma

3.1 that 0Lsi,>*+1) = (g+h) and therefore (g+h)d=ßs is not a square in

GF(q), since s is an odd integer. However, using the relations (3.6) and

(3.7) we obtain that

(g + h)d = (g + h")(g + h)

= á?2 + g(h" + h) + hd

= g2 + a2-2ß+ g(h" + h)

= g2-4ß + g(a3 + h + h")

= g2- *ß-

Hence the lemma.

Let V0 be the vector space overGF(^r) defined by the basis {1, <xd}. Let

v and ô be linear transformations of GF(^4) defined by

r:x —*-xa2d    and    ô : x —> xQxk

with k = s (mod d), where s is the odd integer of Lemma 3.1. Let 77 be the

incidence structure whose points are the vectors of V=GF(q4) and whose

lines are the images of V0 under the group H={v, d) of linear transforma-

tions and their cosets in the additive group of GF(^4), with inclusion as

an incidence relation.

Theorem 3.1. The incidence structure n is a non-Desarguesian affine

translation plane. Further the group H of linear transformations induces a

group of collineations of 77 which fixes the origin and permutes the lines

through the origin transitively.

In the course of the proof of Theorem 3.1 we need the following two

lemmas.

Let 0^x=a+ba.d and y=(b+ß~1aa.d) be elements from V0, where

a, be GF(q). From the relation

(3.11) (Xy-yf^ = ß
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we obtain that

(3.12) xy-1 = aá+«32-i> = a**"

for some integer t and therefore kx is an odd integer, a function of x.

Lemma 3.3.    Let 0?±x=a-rbct.d, y=(b+ß~1aot.d) and z be elements of V0

where a, b eGF(q) and xz-1 ^GF(^). Then x=za.cd for some integer c if

and only if (i) z=ly for some I e GF(q) and (ii) /acd=«fca:á. Further if x=

zacd, then c is an odd integer.

Proof. Obviously (i) and (ii) imply that x=za.ed for some integer c

and z=e+fxd. Suppose that x=zac<i for some integer c and z=e-rfcd.

Obviously zj¿0. From the relation x" +1=zq +1ßc we obtain, after using the

fact that 1,   ord, a.d are linearly independent over GF(q),

(3.13) ab = efßc,

(3.14) a2 + b2ß = (e2 +f2ß)ßc.

Eliminating ßc from (3.13) and (3.14) we have

(3.15) (ßbf - ae)(be - af) = 0.

Since xz-1 ^GF(^), be—af^0. We therefore have that ßbf—ae=0 from

which we obtain that z=l{b-rß~1aa.d) for some leGF{q). The condition

(ii) now follows easily. Since la.cd=a.k*d, where kx is an odd integer, we

have that c also is an odd integer.

Lemma 3.4. Let M={xya.ld\x, y e V0, x^O^y, I an integer}. Then

am £ M where m=s (mod d) and as<Q +1)=u of Lemma 3.1.

Proof. Let x=a+ba.d and y=e+fad, where a, b, e, feGF(q).
Suppose that xya.li = as+/d for some integers / and t. Then

(3.16) (xy)«2+1/3î-i = u

using the relations (3.2), (3.3) and (3.8) in (3.16) we obtain

ß-t+l((ß¥ + aèf + ß(b2e2 + a2f) ~ abefa2)

(3.17) + ßl-\(ßbf + ae)(be + af) - abefa3){ßcTd + ad)

= (a2 + 2ß)a31 + ßoT* + oc*.

Since 1 and (ßa.~d-\-a.d) are linearly independent overGF(^) we obtain, from

(3.17),

(3.18) ß'-'dßbf-r- ae)2 + ß(b2e2 + a2/2) - abefa2) = (a2 + 2ß)a3\

(3.19) ßl-\(ßbf+ ae){be + af) - abefa3) = 1.
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Eliminating ßl~* from (3.18) and (3.19) we obtain

n ttY.    {ßbf+ aef ~ {a* + 2^a31W+ ae)(be + of) + ß(be + aff
(3-2U) = 0

Suppose be+af=0. Then ßbf+ae=0. If we further suppose that any one of

a, b, e, /vanishes, then we obtain that either x=0 ory=0, contrary to the

hypothesis. Thus in case be+af=0, we have a¿¿0¿¿b, e¿¿0¿£f. Eliminating

a and b from be+af=0 and ßbf+ae=0 we obtain ß=e2f~2, a square in

GF(q), a contradiction. Thus be+afj±0. Equation (3.20) may now be

written as

(3.21) iv2 - (a, + 2ß)a31w + ß = 0,

where w=(ßbf+ae)(be+af)~1. Since ((a2+2ß)2a32—4ß) is not a square

in GF(^), the relation (3.21) leads to a contradiction that w satisfies a

quadratic irreducible inGF(^). From this contradiction we infer the truth

of the lemma.

Proof of Theorem 3.1. Let V( be the vector space o ver GF (q) generated

by {a.2id, a.{2i+m} for 0^/<i(?2-l)/2. Obviously Vf is the image of V0

under the linear transformation v* of GF(<74). Let Ut be the vector space

overGF(^) generated by {a*+d««+2¿>, a^2"} for 0<|/<Kç2-l)/2. As before

it may be shown that U0 is the image of V0 under the linear transformation

ô and Ui is the image of U0 under the linear transformation v' ofGF(qi).

Further from the relation

(aa.2id + b«.{2i+1)d)ô = a.2i"d(aa.k + ba.k+"d),

where a, b eGF(q), we obtain that Vß^U¡ where /<7=7'(mod(<72+l)/2).

Similarly from the relation

(aak+2id + ba.k+<2i+<>)d)ô = ¿ww-wrbß + ax^

we obtain that Uià=Vj, where iq+(k—\)¡2=j (moá(qi+1)¡2). Thus the

setP of images of V0 under the group H=(v, d) of linear transformations

of GF(q4) consists of Vi and U, for 0^/^(?2-l)/2 and 0^/^(92-l)/2

and H is transitive on the set P. We may now conclude that, if 7r is an

affine plane, then H induces a collineation group which fixes the origin

and permutes the lines through the origin transitively.

To prove that 77 is an affine plane we have to show that A"¿nF,=

{0} if X& Y,- and X=U or V and Y=U or V, 0^i^(q2-l)/2, 0^;^
(q2—1)/2. Without loss of generality we may suppose i<j. Then from the

relations (JV¿n FJ>-¿=A'0n y,._j and (U^U ])ô-1=V0r\Vj_i we have

that

(3.22) Xi r\ X, = {0}   if and only if X0 n Y}_t = {0},

(3.23) Ui n U¡ = {0}    if and only if V0 n V^ = {0}.
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In view of (3.22) and (3.23) it is enough if we show that

(3.24) V0 n Vt = {0}   for 0 ^ i ^ (q2 - l)/2,

(3.25) V0 n U( = {0}   for 0 ^ i <j (q2 - l)/2.

Obviously F0, Kf, [/, contain the zero vector. To prove (3.24) let us

suppose x g V0, y g V0 with x^O^y and x=j. Then there is a z g F0

such that y=za2!d and consequently x=za2id. This in view of Lemma 3.3

leads to a contradiction that 2i is an odd integer, since xz^1 £ GF(^r).

Suppose (Mx g V0 and (M y g U( and x = y. Then there is a z^O in £/0

such that y=za2id. Let z=(e+fa!"')x'c where e,feGF(q). Then e+fa.qd=

(e+f<x.d)q = {e+f<xiY'i{e+foLd)d. Let e+fad=a.t. Now x = y implies that

x(e-(-/a'í) = ai:+w+2íá contrary to Lemma 3.4. Thus 77 is an affine plane.

Obviously A = (aM) induces a group of collineations of 77 and its order is

(<72-rT)(<7—1)/2. Suppose Fis an odd prime which divides (q*—l) but does

not divide (/?¿ —1) for 0<i'<4r (such a prime exists in view of Corollary 2,

p. 358 of Artin [2]). Obviously Fis not a factor of 2(^+1). Otherwise we

obtain a contradiction that ^2=l(mod F). It then follows that F is a

factor of (q2+l)(q—1)/2, the order of A and satisfies conditions (2) and

(3) of Lemma 3.1 of Foulser [4]. We now claim that V0 is not of the

form ^(GF(^2)) for any a^O from GF(^4). Suppose the contrary. Then

if bj£Q and bV0, it follows that b"1V0=GF(q2) and it may be shown that

it is not the case by taking b=a.d and noting that a.~d $GF(q2). We now

invoke Lemma 6.1 of Foulser [4] to claim that 77 is non-Desarguesian.

This completes the proof of the theorem.

Classification of these planes into nonisomorphic classes will be

discussed elsewhere.
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