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Abstract. We consider a special type of partially ordered

linear algebra which is like an algebra of real-valued functions. We

show that various natural properties characterize this type of

algebra. These natural properties relate the algebraic and order

structures to each other.

A pola (denoted by A) is a real linear associative algebra which is

partially ordered so that it is a directed partially ordered linear space and

O^xy whenever x, ye A, 0=x, O^y. We also assume that A has a

multiplicative identity 1 ̂ 0. A Dedekind cr-complete pola (dsc-pola) A

is one having the property: if jc„ e A, 0 = - ■ ■'¿x2=x1, then inf{.Y,J exists.

Order convergence is defined as usual. A dsc-pola A has the Archimedean

property: if x, y bA and nx^y for every positive integer «, then ,y^0.

For more details and examples see the references.

The simple example of interest to us here is the dsc-pola A of all real-

valued functions defined on some nonempty set, where the algebraic

operations and the partial order are defined pointwise. We note that A has

the following property:

P,: If x e A and x^l, then x has an inverse and x_1^0.

If we now consider an arbitrary dsc-pola A which has property Pls then

we can show that A is much like an algebra of real-valued functions;

however, the operations may only be defined "almost everywhere" (see

example 5 of [4]). Some of the basic properties are given in the following

theorem.

Theorem 1. If A is a dsc-pola which has property Pl5 then multiplication

of elements in A is commutative and A is a lattice. Furthermore, x2—^0for

all x e A and if y e A and y—0, then there exists a unique z e A such that

z2=y and z=0.

This theorem was proved by the author but it appears as the necessary

introduction to the thesis of his former student, T. Dai, who showed in
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addition that A (having property Px) is an /-ring [1, p. 403]. The reader is

referred to Dai's paper [2] for examples and proofs. The purpose of this

paper is to show that various natural properties for a dsc-pola A imply that

A has property Px.

Lemma 1. Let A be a dsc-pola. If x = \ and there exists y—0 such that

1 ̂ xy or 1 ̂ .yx, then x has an inverse and x_1^l. From this it follows that

ifl—^u—^vandv has an inverse and v^—O, then u has an inverse and w1=0.

For the proof see Proposition 3 and its corollary in [3].

Lemma 2. Let A be a dsc-pola which has the property: if x e A and

X—0, then there exists a sequence {xn} of elements from A such that 0 —

xn=n\ for all n and o-lim xn=x. Then A has property Px.

For the proof see (v) of Lemma 1.6.6 in [2].

The following two properties concern one-sided factoring of one element

by another.

Theorem 2. Let Abe a dsc-pola which has the property: if yu y2e A

and 0^y^y2, then there exists w e A such that w—0 andyx = wy2. Then A

has property Px.

Proof. Take any x e A such that x=1 ^0. Hence, there exists w e A

such that w=0 and wx=\. Since vv^O and x=l, we have w£l. Using

Lemma 1, we see that x_1 = vv^0.

Theorem 3. Let A be a dsc-pola which has the property: ij'yu y2e A

and 1^7i^j>2, then there exists w e A such that w=l and wyx=y2. Then

A has property Px.

Proof. Take any x e A such that x=1. Since 1 —X—x+l, there exists

we A such that w^l and wx=x+\. Hence, (vv— 1)jc=1, where w—

1^0. Thus, w— 1 ̂ 1 and we may again use Lemma 1 to show that x-1 =

w-1^0.

The following is a decomposition property for multiplication in a dsc-

pola which is commutative.

Theorem 4. Let A be a commutative dsc-pola which has the property:

if y e A, y=0 and 0—^w^y2, then there exist elements u, v e A such that

0—^u^y, 0 — V^y and uv = w. Then A has property Pj.

Proof. Take any x, ye A such that \—X—x+l^y. Thus, O^y2 —

1 ̂ y2. Hence, we may find u, v e A such that 0 = u^y, 0=v^y, and uv =

y2—\. We see easily that \=y(y—u) + u(y—v). We remark that this is the

only place we use commutativity. Using the inequalities given above, one

can easily show that 0^y—w^l, w^l  and then 0^y—v—l.  Since
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l + (y—u)(y—v)=y(2y—u—v) and Q-=(y—ú)(y—v)^\, we see that

(i)j(2y—u—v)= land then by using Lemma 1, we obtain [y(2y—u—v)]~1 —

0. By using Lemma 1 twice, one can show first that y_1=0 and then

x-^0.

At the end of the paper a counterexample will be given to show that A

must be commutative in the previous theorem. However, we can drop

commutativity if we use a stronger decomposition property as follows.

Theorem 5. Let A be a dsc-pola which has the property : if y e A,

y=0 and O^w^y2, then there exists u e A such that 0—^u^y and u2==w.

Then A has property Px.

Proof. Take any x, y e A such that \—^x—^x+\^y. Thus, O^j2—

l^y2. Hence, we may find ueA such that 0=u^y and u2=y2— 1. We

see easily that l=y(y—u) + (y—u)u. Using the inequalities given above,

one can easily show that 0^y—u—l. Since 0^y—u, we see thaty(y — u)—^

1 and y(y—u)(l+u)=y(y—u)+y(y—u)u—^l. Using Lemma 1 twice, we

can first show that [y(y—h)]_1^0 and then^^O. Using Lemma 1 again,

we can show that x_1^0.

Next we consider an order-reversing property for left inverses.

Theorem 6. Let A be a dsc-pola which has the property: if yu y2e A

and l^y^y2, then there exist wu w2eA such that w2=-w± and w1y1 =

w2y2=\. Then A has property P,.

Proof. Take any x e A such that 1 rgx^x-f-1. There exist wlt w2 e A

such that w2-=w1 and h1x=w2(x+1) = 1. Hence, (w1—w2)x==w2 and

(h>,— h'2)x(x+1) = 1. Since x(x+1) —I and O^w, — w2, we have w\ — w2=\.

Using Lemma l twice, we can first show that [x(x+l)]~1 = w1 — h'2^0 and

then x_1^0.

The next property concerns generalized inverses.

Theorem 7. Let A be a dsc-pola which has the property: ifzeA and

z=\, then there exists w e A such that w=0 and zwz=z. Then A has prop-

erty Pj.

Proof. From the above it follows that if veA, v=\ and v has an

inverse, then t;_1^0. Let us now take w and z as in the statement of the

theorem. If we put u=wz, then 0 = u=u2. Since l+«w^l and 1+«« has

an inverse for every positive integer «, we obtain 0 = (\+nu)~l=l —

(n/n+\)u for all n. Using the Archimedean property, we obtain wz=u=\.

Since zwzssz>l, we obtain (tvz)_1^l by using Lemma 1. By again using

Lemma 1 we obtain z ^0.

The following question is unanswered.
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Question. Let A be a dsc-pola which has the property: if x e A, then

x2^.0. Does A have property Pj?

We can answer this question in certain special cases.

Theorem 8. Let A be a dsc-pola which has the properties: A is a lattice

and if x e A, then x2=Q. Then A has property Pj.

Proof. Take any zeA such that z^O. Since (2«1—z)2^0, we get

0^z^«l +(l/4«)z2 for every positive integer n. Since A is alattice, we may

write z=zn + wn, where O^z,,^«! and 0^wn = (l¡4n)z2 for all n. Thus, o-

lim zn=z. Using Lemma 2, we see that A has property Px.

Some definitions are necessary for the next two theorems. An element

ue Aïs called an order unit if u=0 and if for any x e A there exists a real

number a such that —v.u=x=au. A dsc-pola A is said to have the Perron-

Frobenius (PF) property if for every x e A, x=0, there exists a real number

A>0 such that XI—x has an inverse and (Xl—x)~l=0. The name of this

property is justified in [4]. A dsc-pola A is said to have the large inverse

property if for any x e A there exists y e A such that x^y and y has an

inverse. The large inverse property plays a key role in Theorem 10. The

next theorem gives a chain of implications showing that the large inverse

property is a consequence of other natural properties.

Theorem 9. Let A be a dsc-pola. If A is finite-dimensional, then A has

an order unit. If A has an order unit, then A has the PF property. If A has

the PF property, then A has the large inverse property.

Proof. The first implication is a consequence of two facts: A is finite

dimensional and A is directed. The proof of the second implication can be

found in Theorem 6 of [4]. The proof of the third implication can be found

in Proposition 3 of [3].

Theorem 10. Let A be a dsc-pola which has the large inverse property

and also has the property: if z e A, then z2^0. Then A has property Pv

Proof. Take any x e A such that x=l. Since A has the large inverse

property, there exists y e A such that x^y and y has an inverse. From

the second property we obtain 0^(y~1)2 = (y2)~1. Since l—.x^y^y2, we

can use Lemma 1 to show that x_1^0.

The final two theorems concern special assumptions about the way an

element can be expressed as the difference of two nonnegative elements.

Theorem 11. Let A be a dsc-pola which has the property: if x e A, then

there exists aeA such that O^a^l, ax^.0 and (1— a)x=0. Then A has

property Px.
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Proof. Take any z e A such that z^O. Next select an e A such that

0^a„^l, a„(«l— z)^0 and (1—an)(«l—z)^0 for every positive integer «.

Hence, 0=anZ—-nan=n\ and 0=n(l—an) = (l—an)z. From the latter in-

equalities and the fact that 0^1— a„^l, we obtain 0=n(l—an)=z and

then 0—z—anz=(l¡n)z2. Putting zn = anz, we see that 0—zn=n\ and o-

lim zn=z. We may now use Lemma 2 to show that A has property Pj.

The last theorem was proved by the author but credit is due Ralph

Gellar. He proved a slightly weaker theorem which inspired the author to

work on the following theorem.

Theorem 12. Let Abe a dsc-pola which has the property: ifx e A, then

there exist y, z e A such that y=0, z=0, j>z=0 and x=y—z. Then A has

property Pj. (Gellar also assumed that zy=0.)

Proof. The key idea involved is that if a e A and 0=a2=a, then a=\.

We first prove this fact.

There exist b, c e A such that b=0, c=0, bc=0 and 1— a=b — c. Since

a2—a, we have 0=a—a2=a(\ —a)=a(b — c), which means that 0=ac=ab.

Hence, 0=ac2=abc=0, which means that ac2=0. Since l = l+c=a+b,

we obtain 0^c2^ac2=0, which means that c2=0. Now there exist d,

ee A such that d=0, e=0, de=0 and 1— c=d—e. Therefore, l^l+e =

c+d so that e=ce. Hence, 0=e=ce — c2e=0, which means that e=0. It

follows that 0^ 1 — c so that 0 = (l—c)n = l — nc for every positive integer «.

From the Archimedean property it follows that c=0, which means that

a=\.

Now take any he A such that h=Q. For each positive integer « there

exist yn,zn e A such that yn=0,zn=0,ynzn=0 and n\—h=yn—zn. Hence,

0^yl^yn(yn+h)=yn(nl+Zn)=nyn for all «. Thus, 0=dln)2yl = (lln)yn

so that 0^yn=nl for all «. The last inequality is obtained from the result

of the preceding paragraph. Since yn=nl, we obtain zn=h for all «. Now

7!zri^(«l+zjz„ = (j>n+«)zn=«z„^«2 for all «, which means that if we

define hn=n\— ^„,then0^«—«n^(l/«)«2.Thus,0g«„^«lando-lim «„ =

h. Using Lemma 2, we see that A has property Px.

Counterexamples. Let M be the real linear algebra of all 2-by-2

matrices in upper triangular form, where all entries are real. If M is

partially ordered entry by entry, then M is a dsc-pola which is not com-

mutative. The reader is invited to use M to verify that the order conditions

are necessary in Theorems 2, 3, 5, 6 and 7. For example, look at the proof

of Theorem 2. If we take any x e M such that x^l, then there exists

w e M such that wx=l, but it may happen that w not ^0. The dsc-pola

M has the property described in Theorem 4 but it is not commutative. Note

that M is a lattice and has the large inverse property but it does not have
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the other property needed in Theorems 8 and 10. Also M does not have the

properties described in Theorems 11 and 12.
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