A CLASS OF PARTIALLY ORDERED LINEAR ALGEBRAS

RALPH DEMARR

ABSTRACT. We consider a special type of partially ordered linear algebra which is like an algebra of real-valued functions. We show that various natural properties characterize this type of algebra. These natural properties relate the algebraic and order structures to each other.

A pola (denoted by A) is a real linear associative algebra which is partially ordered so that it is a directed partially ordered linear space and $0 \le xy$ whenever x, $y \in A$, $0 \le x$, $0 \le y$. We also assume that A has a multiplicative identity $1 \ge 0$. A Dedekind σ -complete pola (dsc-pola) A is one having the property: if $x_n \in A$, $0 \le \cdots \le x_2 \le x_1$, then $\inf\{x_n\}$ exists. Order convergence is defined as usual. A dsc-pola A has the Archimedean property: if x, $y \in A$ and $nx \le y$ for every positive integer n, then $x \le 0$. For more details and examples see the references.

The simple example of interest to us here is the dsc-pola A of all realvalued functions defined on some nonempty set, where the algebraic operations and the partial order are defined pointwise. We note that A has the following property:

P₁: If $x \in A$ and $x \ge 1$, then x has an inverse and $x^{-1} \ge 0$.

If we now consider an arbitrary dsc-pola A which has property P_1 , then we can show that A is much like an algebra of real-valued functions; however, the operations may only be defined "almost everywhere" (see example 5 of [4]). Some of the basic properties are given in the following theorem.

THEOREM 1. If A is a dsc-pola which has property P_1 , then multiplication of elements in A is commutative and A is a lattice. Furthermore, $x^2 \ge 0$ for all $x \in A$ and if $y \in A$ and $y \ge 0$, then there exists a unique $z \in A$ such that $z^2 = y$ and $z \ge 0$.

This theorem was proved by the author but it appears as the necessary introduction to the thesis of his former student, T. Dai, who showed in

© American Mathematical Society 1973

Received by the editors September 18, 1972.

AMS (MOS) subject classifications (1970). Primary 06A70; Secondary 15A45.

Key words and phrases. Dedekind σ -complete partially ordered linear algebra, algebra of real-valued functions, matrix inequalities, f-ring.

addition that A (having property P₁) is an *f*-ring [1, p. 403]. The reader is referred to Dai's paper [2] for examples and proofs. The purpose of this paper is to show that various natural properties for a dsc-pola A imply that A has property P₁.

LEMMA 1. Let A be a dsc-pola. If $x \leq 1$ and there exists $y \geq 0$ such that $1 \leq xy$ or $1 \leq yx$, then x has an inverse and $x^{-1} \geq 1$. From this it follows that if $1 \leq u \leq v$ and v has an inverse and $v^{-1} \geq 0$, then u has an inverse and $u^{-1} \geq 0$.

For the proof see Proposition 3 and its corollary in [3].

LEMMA 2. Let A be a dsc-pola which has the property: if $x \in A$ and $x \ge 0$, then there exists a sequence $\{x_n\}$ of elements from A such that $0 \le x_n \le n1$ for all n and o-lim $x_n = x$. Then A has property P_1 .

For the proof see (v) of Lemma 1.6.6 in [2].

The following two properties concern one-sided factoring of one element by another.

THEOREM 2. Let A be a dsc-pola which has the property: if $y_1, y_2 \in A$ and $0 \leq y_1 \leq y_2$, then there exists $w \in A$ such that $w \geq 0$ and $y_1 = wy_2$. Then A has property P_1 .

PROOF. Take any $x \in A$ such that $x \ge 1 \ge 0$. Hence, there exists $w \in A$ such that $w \ge 0$ and wx=1. Since $w \ge 0$ and $x \ge 1$, we have $w \le 1$. Using Lemma 1, we see that $x^{-1}=w \ge 0$.

THEOREM 3. Let A be a dsc-pola which has the property: if $y_1, y_2 \in A$ and $1 \leq y_1 \leq y_2$, then there exists $w \in A$ such that $w \geq 1$ and $wy_1 = y_2$. Then A has property P_1 .

PROOF. Take any $x \in A$ such that $x \ge 1$. Since $1 \le x \le x+1$, there exists $w \in A$ such that $w \ge 1$ and wx = x+1. Hence, (w-1)x = 1, where $w-1\ge 0$. Thus, $w-1\le 1$ and we may again use Lemma 1 to show that $x^{-1} = w-1\ge 0$.

The following is a decomposition property for multiplication in a dscpola which is commutative.

THEOREM 4. Let A be a commutative dsc-pola which has the property: if $y \in A$, $y \ge 0$ and $0 \le w \le y^2$, then there exist elements $u, v \in A$ such that $0 \le u \le y, 0 \le v \le y$ and uv = w. Then A has property P_1 .

PROOF. Take any $x, y \in A$ such that $1 \leq x \leq x+1 \leq y$. Thus, $0 \leq y^2 - 1 \leq y^2$. Hence, we may find $u, v \in A$ such that $0 \leq u \leq y, 0 \leq v \leq y$, and $uv = y^2 - 1$. We see easily that 1 = y(y-u) + u(y-v). We remark that this is the only place we use commutativity. Using the inequalities given above, one can easily show that $0 \leq y-u \leq 1$, $u \geq 1$ and then $0 \leq y-v \leq 1$. Since

1+(y-u)(y-v)=y(2y-u-v) and $0 \le (y-u)(y-v) \le 1$, we see that $(\frac{1}{2})y(2y-u-v)\le 1$ and then by using Lemma 1, we obtain $[y(2y-u-v)]^{-1}\ge 0$. By using Lemma 1 twice, one can show first that $y^{-1}\ge 0$ and then $x^{-1}\ge 0$.

At the end of the paper a counterexample will be given to show that A must be commutative in the previous theorem. However, we can drop commutativity if we use a stronger decomposition property as follows.

THEOREM 5. Let A be a dsc-pola which has the property: if $y \in A$, $y \ge 0$ and $0 \le w \le y^2$, then there exists $u \in A$ such that $0 \le u \le y$ and $u^2 = w$. Then A has property P_1 .

PROOF. Take any $x, y \in A$ such that $1 \le x \le x + 1 \le y$. Thus, $0 \le y^2 - 1 \le y^2$. Hence, we may find $u \in A$ such that $0 \le u \le y$ and $u^2 = y^2 - 1$. We see easily that 1 = y(y-u) + (y-u)u. Using the inequalities given above, one can easily show that $0 \le y - u \le 1$. Since $0 \le y - u$, we see that $y(y-u) \le 1$ and $y(y-u)(1+u) = y(y-u) + y(y-u)u \ge 1$. Using Lemma 1 twice, we can first show that $[y(y-u)]^{-1} \ge 0$ and then $y^{-1} \ge 0$. Using Lemma 1 again, we can show that $x^{-1} \ge 0$.

Next we consider an order-reversing property for left inverses.

THEOREM 6. Let A be a dsc-pola which has the property: if $y_1, y_2 \in A$ and $1 \leq y_1 \leq y_2$, then there exist $w_1, w_2 \in A$ such that $w_2 \leq w_1$ and $w_1y_1 = w_2y_2 = 1$. Then A has property P_1 .

PROOF. Take any $x \in A$ such that $1 \leq x \leq x+1$. There exist $w_1, w_2 \in A$ such that $w_2 \leq w_1$ and $w_1 x = w_2(x+1) = 1$. Hence, $(w_1 - w_2) x = w_2$ and $(w_1 - w_2) x(x+1) = 1$. Since $x(x+1) \geq 1$ and $0 \leq w_1 - w_2$, we have $w_1 - w_2 \leq 1$. Using Lemma 1 twice, we can first show that $[x(x+1)]^{-1} = w_1 - w_2 \geq 0$ and then $x^{-1} \geq 0$.

The next property concerns generalized inverses.

THEOREM 7. Let A be a dsc-pola which has the property: if $z \in A$ and $z \ge 1$, then there exists $w \in A$ such that $w \ge 0$ and zwz = z. Then A has property P_1 .

PROOF. From the above it follows that if $v \in A$, $v \ge 1$ and v has an inverse, then $v^{-1} \ge 0$. Let us now take w and z as in the statement of the theorem. If we put u=wz, then $0 \le u=u^2$. Since $1+nu\ge 1$ and 1+nu has an inverse for every positive integer n, we obtain $0 \le (1+nu)^{-1}=1-(n/n+1)u$ for all n. Using the Archimedean property, we obtain $wz=u\le 1$. Since $zwz=z\ge 1$, we obtain $(wz)^{-1}\ge 1$ by using Lemma 1. By again using Lemma 1 we obtain $z^{-1}\ge 0$.

The following question is unanswered.

Question. Let A be a dsc-pola which has the property: if $x \in A$, then $x^2 \ge 0$. Does A have property P_1 ?

We can answer this question in certain special cases.

THEOREM 8. Let A be a dsc-pola which has the properties: A is a lattice and if $x \in A$, then $x^2 \ge 0$. Then A has property P_1 .

PROOF. Take any $z \in A$ such that $z \ge 0$. Since $(2n1-z)^2 \ge 0$, we get $0 \le z \le n1 + (1/4n)z^2$ for every positive integer *n*. Since *A* is a lattice, we may write $z = z_n + w_n$, where $0 \le z_n \le n1$ and $0 \le w_n \le (1/4n)z^2$ for all *n*. Thus, *o*-lim $z_n = z$. Using Lemma 2, we see that *A* has property P₁.

Some definitions are necessary for the next two theorems. An element $u \in A$ is called an order unit if $u \ge 0$ and if for any $x \in A$ there exists a real number α such that $-\alpha u \le x \le \alpha u$. A dsc-pola A is said to have the Perron-Frobenius (PF) property if for every $x \in A, x \ge 0$, there exists a real number $\lambda > 0$ such that $\lambda 1 - x$ has an inverse and $(\lambda 1 - x)^{-1} \ge 0$. The name of this property if for any $x \in A$ there exists $y \in A$ such that $x \le y$ and y has an inverse. The large inverse property plays a key role in Theorem 10. The next theorem gives a chain of implications showing that the large inverse property is a consequence of other natural properties.

THEOREM 9. Let A be a dsc-pola. If A is finite-dimensional, then A has an order unit. If A has an order unit, then A has the PF property. If A has the PF property, then A has the large inverse property.

PROOF. The first implication is a consequence of two facts: A is finite dimensional and A is directed. The proof of the second implication can be found in Theorem 6 of [4]. The proof of the third implication can be found in Proposition 3 of [3].

THEOREM 10. Let A be a dsc-pola which has the large inverse property and also has the property: if $z \in A$, then $z^2 \ge 0$. Then A has property P_1 .

PROOF. Take any $x \in A$ such that $x \ge 1$. Since A has the large inverse property, there exists $y \in A$ such that $x \le y$ and y has an inverse. From the second property we obtain $0 \le (y^{-1})^2 = (y^2)^{-1}$. Since $1 \le x \le y \le y^2$, we can use Lemma 1 to show that $x^{-1} \ge 0$.

The final two theorems concern special assumptions about the way an element can be expressed as the difference of two nonnegative elements.

THEOREM 11. Let A be a dsc-pola which has the property: if $x \in A$, then there exists $a \in A$ such that $0 \leq a \leq 1$, $ax \geq 0$ and $(1-a)x \leq 0$. Then A has property P_1 . **PROOF.** Take any $z \in A$ such that $z \ge 0$. Next select $a_n \in A$ such that $0 \le a_n \le 1$, $a_n(n1-z) \ge 0$ and $(1-a_n)(n1-z) \le 0$ for every positive integer n. Hence, $0 \le a_n z \le n a_n \le n1$ and $0 \le n(1-a_n) \le (1-a_n)z$. From the latter inequalities and the fact that $0 \le 1-a_n \le 1$, we obtain $0 \le n(1-a_n) \le z$ and then $0 \le z - a_n z \le (1/n)z^2$. Putting $z_n = a_n z$, we see that $0 \le z_n \le n1$ and $o = \lim_{n \to \infty} z_n = z$. We may now use Lemma 2 to show that A has property P_1 .

The last theorem was proved by the author but credit is due Ralph Gellar. He proved a slightly weaker theorem which inspired the author to work on the following theorem.

THEOREM 12. Let A be a dsc-pola which has the property: if $x \in A$, then there exist y, $z \in A$ such that $y \ge 0$, $z \ge 0$, yz=0 and x=y-z. Then A has property P_1 . (Gellar also assumed that zy=0.)

PROOF. The key idea involved is that if $a \in A$ and $0 \leq a^2 \leq a$, then $a \leq 1$. We first prove this fact.

There exist b, $c \in A$ such that $b \ge 0$, $c \ge 0$, bc = 0 and 1-a=b-c. Since $a^2 \le a$, we have $0 \le a - a^2 = a(1-a) = a(b-c)$, which means that $0 \le ac \le ab$. Hence, $0 \le ac^2 \le abc = 0$, which means that $ac^2 = 0$. Since $1 \le 1+c=a+b$, we obtain $0 \le c^2 \le ac^2 = 0$, which means that $c^2 = 0$. Now there exist d, $e \in A$ such that $d \ge 0$, $e \ge 0$, de=0 and 1-c=d-e. Therefore, $1 \le 1+e=c+d$ so that $e \le ce$. Hence, $0 \le e \le ce \le c^2e=0$, which means that e=0. It follows that $0 \le 1-c$ so that $0 \le (1-c)^n = 1-nc$ for every positive integer n. From the Archimedean property it follows that c=0, which means that $a \le 1$.

Now take any $h \in A$ such that $h \ge 0$. For each positive integer *n* there exist $y_n, z_n \in A$ such that $y_n \ge 0, z_n \ge 0, y_n z_n = 0$ and $n1 - h = y_n - z_n$. Hence, $0 \le y_n^2 \le y_n(y_n + h) = y_n(n1 + z_n) = ny_n$ for all *n*. Thus, $0 \le (1/n)^2 y_n^2 \le (1/n)y_n$ so that $0 \le y_n \le n1$ for all *n*. The last inequality is obtained from the result of the preceding paragraph. Since $y_n \le n1$, we obtain $z_n \le h$ for all *n*. Now $nz_n \le (n1 + z_n)z_n = (y_n + h)z_n = hz_n \le h^2$ for all *n*, which means that if we define $h_n = n1 - y_n$, then $0 \le h - h_n \le (1/n)h^2$. Thus, $0 \le h_n \le n1$ and o-lim $h_n = h$. Using Lemma 2, we see that A has property P₁.

COUNTEREXAMPLES. Let M be the real linear algebra of all 2-by-2 matrices in upper triangular form, where all entries are real. If M is partially ordered entry by entry, then M is a dsc-pola which is not commutative. The reader is invited to use M to verify that the order conditions are necessary in Theorems 2, 3, 5, 6 and 7. For example, look at the proof of Theorem 2. If we take any $x \in M$ such that $x \ge 1$, then there exists $w \in M$ such that wx=1, but it may happen that w not ≥ 0 . The dsc-pola M has the property described in Theorem 4 but it is not commutative. Note that M is a lattice and has the large inverse property but it does not have

RALPH DEMARR

the other property needed in Theorems 8 and 10. Also M does not have the properties described in Theorems 11 and 12.

References

1. G. Birkhoff, *Lattice theory*, Amer. Math. Soc. Colloq. Publ., vol. 25, Amer. Math. Soc., Providence, R.I., 1967. MR 37 #2638.

2. T. Dai, On a special class of partially ordered linear algebras, J. Math. Anal. Appl. 40 (1972), 649–682.

3. R. E. DeMarr, On partially ordering operator algebras, Canad. J. Math. 19 (1967), 636-643.

4. _____, A generalization of the Perron-Frobenius theorem, Duke Math. J. 37 (1970), 113-120.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NEW MEXICO, ALBUQUERQUE, NEW MEXICO 87106