INDECOMPOSABLE CONTINUA IN STONE-ČECH COMPACTIFICATIONS

DAVID P. BELLAMY AND LEONARD R. RUBIN

ABSTRACT. We show that if Y is a continuum irreducible from a to b, which is connected im Kleinen and first countable at b, and if $X=Y-\{b\}$, then $\beta X-X$ is an indecomposable continuum. Examples are given showing that both first countability and connectedness im Kleinen are needed here. We also show that $\beta[0, 1)-[0, 1)$ has a strong near-homogeneity property.

1. Introduction. In [2] and [3] it is shown that if X=[0, 1) then $\beta X - X$ is an indecomposable continuum; here βX is the Stone-Čech compactification of X. In [7], Dickman showed that among locally connected spaces, [0, 1) is essentially the only such space. In this paper we exhibit other types of spaces X with this property. We shall also show that for X=[0, 1), $\beta X - X$ is stably almost homogeneous, a concept to be defined below.

The set function T has been studied and applied in [1], [5], [6], [8], [9], [11], and [14]. We follow these papers in writing T(p) for $T(\{p\})$. This set function will be used in the argument at one point and familiarity with it is assumed. Familiarity with [10], [12], [13], and [15] is also assumed. If we write $X = A \cup B$ sep, then we mean that $Cl(A) \cap B = \emptyset$ and $A \cap Cl(B) = \emptyset$ while neither A nor B is empty. By $f: X \cong Y$, we mean f is a homeomorphism of X onto Y.

2. Indecomposable continua in βX .

LEMMA 1. There is a covariant functor β on the category of Tychonoff spaces and continuous maps such that for any Tychonoff space X, βX is the Stone-Čech compactification of X and if $f: X \rightarrow Y$ then $\beta f: \beta X \rightarrow \beta Y$ is the unique extension of f induced by f treated as a map from X to βY .

Notation. If X is a Tychonoff space, let $\gamma X = \beta X - X$. If f is a continuous map from X to Y, let γf denote $\beta f | \gamma X$.

DEFINITION. Let Y be a compact Hausdorff continuum irreducible from a to b such that Y is both connected im Kleinen and first countable

© American Mathematical Society 1973

Received by the editors November, 1971 and, in revised form, September 8, 1972.

AMS (MOS) subject classifications (1970). Primary 54C05, 54D35, 54F20; Secondary 54F15.

Key words and phrases. Remainders of compactifications.

at b. Let $X = Y - \{b\}$. Then we call the topological pair (Y, X) a wave from a to b.

By stringing together indecomposable continua, a wave (Y, X) can be constructed such that Y is not connected im Kleinen at any point of X.

LEMMA 2. If Y is a compact Hausdorff continuum irreducible from a to b and $x \in Y$, T(x) either separates a from b, contains a, or contains b. In case T(x) separates a from b, Y-T(x) has exactly two components, A and B, where $a \in A$ and $b \in B$, and both $T(x) \cup A$ and $T(x) \cup B$ are proper subcontinua of Y containing a and b respectively.

REMARK ON PROOF. This lemma can be established using standard techniques and Theorem 1.10 of [14], since each $x \in Y$ different from a and b weakly separates a from b.

LEMMA 3. If Y is a compact Hausdorff continuum irreducible from a to b and $W \subseteq Y$ is a continuum with $b \in Int W$, then $W - \{b\}$ is connected.

PROOF. If $W - \{b\} = M_0 \cup N_0$ sep, let $M = M_0 \cup \{b\}$; $N = N_0 \cup \{b\}$. Then b lies in the boundary of M and N and, by Theorem 6 of [15, p. 194], each of M and N is nowhere dense, so that $M \cup N = W$ is nowhere dense also, a contradiction.

LEMMA 4. If (Y, X) is a wave from a to b, and Z is a Hausdorff compactification of X, then Z-X is a Hausdorff continuum.

PROOF. Since Y is connected im Kleinen and first countable at b, there exists a denumerable collection of continua $\{N_i\}_{i=1}^{\infty}$ such that for each $i, b \in \text{Int}(N_i)$ and $N_{i+1} \subseteq N_i$ and $\bigcap_{i=1}^{\infty} N_i = \{b\}$. It is readily seen that

$$Z - X = Cl_{Z}(N_{i} - \{b\}) - N_{i} = \bigcap_{i=1}^{\infty} Cl_{Z}(N_{i} - \{b\}).$$

Then, since each $N_i - \{b\}$ is connected by Lemma 3, Z - X is an intersection of a monotone collection of continua.

LEMMA 5. Let X be a compact Hausdorff space, $b \in X$, $\{b\}$ a component of X, and suppose X is first countable at b and $\langle b_i \rangle_{i=1}^{\infty}$ is a sequence in $X - \{b\}$ converging to b. Then there exist two closed subsets A and B of X such that $A \cup B = X$, $A \cap B = \{b\}$, and each of A and B contains infinitely many (that is, a subsequence) of the b_i 's.

PROOF. It is readily seen that there exists a neighborhood basis $\{N_j\}_{j=1}^{\infty}$ at b consisting of closed and open sets such that $N_{j+1} \subseteq N_j$ for each j and $N_1 = X$; by passing to a subset if necessary, we may suppose that each

 $N_i - N_{i+1}$ contains at least one of the b_i's. Then set

$$A = \{b\} \cup \bigcup_{j=1}^{\infty} (N_{2j-1} - N_{2j}), \qquad B = \{b\} \cup \bigcup_{j=1}^{\infty} (N_{2j} - N_{2j+1}).$$

Then A and B have the desired properties.

LEMMA 6. If (Y, X) is a wave from a to b and W is a nondegenerate subcontinuum of Y containing b, then $b \in Int W$.

PROOF. Suppose not. Then let $p \in W$, $p \neq b$. Since $b \notin T(p)$, by connectedness im Kleinen at b, it follows that either $a \in T(p)$ or $Y - T(p) = A \cup B$ sep, where $a \in A$ and $b \in B$. If $a \in T(p)$, $T(p) \cup W$ is a proper subcontinuum of Y containing both a and b; if $a \notin T(p)$, $A \cup T(p) \cup W$ is such a continuum, and in either case we have a contradiction.

COROLLARY 1. If (Y, X) is a wave from a to b and M is a closed subset of Y with $b \in M$ but $b \notin \text{Int } M$, $\{b\}$ is a component of M.

LEMMA 7. If Y is a compact Hausdorff space first countable at a point b, then $Y - \{b\}$ is normal.

PROOF. Let $\{O_k\}_{k=1}^{\infty}$ be a countable basis of open neighborhoods at b. Then $Y - \{b\} = \bigcup_{k=1}^{\infty} (Y - O_k)$, so that $Y - \{b\}$ is sigma compact and hence Lindelöf. Then $Y - \{b\}$ is paracompact [10, p. 174, 6.5] and hence normal [10, p. 163, 2.2].

THEOREM 1. If (Y, X) is a wave from a to b, then γX is an indecomposable continuum.

PROOF. By Lemma 4, γX is a continuum. Suppose F is a proper subcontinuum of γX which contains an interior point q with respect to γX . Let $p \in \gamma(X) - F$. Let U and V be open sets in βX with $Cl(U) \cap Cl(V) =$ $Cl(U) \cap (\gamma X - \text{Int } F) = Cl(V) \cap F = \emptyset$ while $p \in V$ and $q \in U$. This is possible by regularity.

Then $X \cap V$ and $X \cap U$ are open subsets of X and hence of Y since X is open in Y. Let $\langle b_i \rangle_{i=1}^{\infty}$ be a sequence of points in $U \cap X$ converging in Y to b. This is possible since $b \in \operatorname{Cl}_Y(U \cap X)$ and Y is first countable at b.

Then $\{b\}$ is a component of $Y-(V\cap X)$, by Corollary 1, and $\langle b_i \rangle$ is a sequence in $(Y-V)-\{b\}$ converging to b. By Lemma 6 there are two closed sets A_0 and B_0 such that $A_0 \cup B_0 = Y-V$, $A_0 \cap B_0 = \{b\}$, and each of A_0 and B_0 contains a subsequence of the b_i 's. Let $A = A_0 \cap X$, $B = B_0 \cap X$. Then A and B are disjoint closed subsets of X, and since X is normal, disjoint closed sets lie in disjoint zero sets, and by Theorem 6.5 III of [12], $\operatorname{Cl}_{\beta X}(A) \cap \operatorname{Cl}_{\beta X}(B) = \emptyset$. Now since each of A and B contains infinitely many of the b_i 's, it follows that each of $\operatorname{Cl}_{\beta X}(A)$ and $\operatorname{Cl}_{\beta X}(B)$ contains

429

1973]

points of $\operatorname{Cl}_{\beta X}(U) \cap \gamma X$, and hence points of F. Thus, since if $x \in \gamma X - \operatorname{Cl}_{\beta X}(A \cup B)$, it follows that $x \in \operatorname{Cl}_{\beta X}(V)$ and hence $x \notin F$, we have $F = (F \cap \operatorname{Cl}_{\beta X}(A)) \cup (F \cap \operatorname{Cl}_{\beta X}(B))$ sep, so that F is no continuum.

COROLLARY 2 ([2] AND [3]). Let X = [0, 1). Then γX is an indecomposable continuum.

EXAMPLE 1. Let L denote the long line, consisting of $\omega_1 \times [0, 1)$ with the lexicographic order, where ω_1 is the first uncountable ordinal; we take the order topology on L. Then consider $L \times [0, 1]$ with the product topology. Let

$$X = \{((\alpha, t), s) \in L \times [0, 1] : t = 0 \text{ or } t = s\}.$$

Let $Y = X \cup \{b\}$ be the one-point compactification of X. Then Y is irreducible from ((0, 0), 1) to b and is connected im Kleinen at b. (Y, X) fails to be a wave from a to b because Y is not first countable at b.

Standard techniques applied to continuous functions from ω_1 to [0, 1] yield the result that $\gamma X \cong [0, 1]$ in this case. Thus, first countability cannot be dispensed with in the hypothesis of Theorem 1. Connectedness im Kleinen also cannot be removed from the hypothesis of Theorem 1; the usual topologist's sin 1/x curve, with b taken from the limit arc, yields a decomposable continuum as γX .

LEMMA 8. If X is a Tychonoff space and Z is any compactification of X with inclusion map $i: X \rightarrow Z$, then $\gamma i(\gamma X) = Z - i(X)$.

REMARK ON PROOF. This is a special case of Theorem 6.12 of [12, p. 92].

LEMMA 9. If X and Y are Tychonoff spaces and $f: X \cong Y$, then $\gamma f: \gamma X \cong \gamma Y$.

PROOF. By Lemma 8, $\gamma f(\gamma X) = \gamma Y$ and since β is a functor it follows that βf is a homeomorphism since it has inverse $\beta(f^{-1})$. Then γf is a homeomorphism since it is a restriction of one.

LEMMA 10. Let X be a normal Hausdorff space and A a closed subset of X such that X - A contains a closed but not compact subset of X. Then $\gamma X - Cl_{\beta X}(A)$ is a nonempty, open subset of γX .

LEMMA 11. Suppose X is a Tychonoff space and $f: X \cong X$ is the identity inside some closed subset V of X. Then $\gamma f: \gamma X \cong \gamma X$ is the identity inside $\gamma X \cap Cl_{\beta X}(V)$.

DEFINITION. We say a topological space X is almost homogeneous if for any $p, q \in X$, and any neighborhood U of q there is a homeomorphism $h: X \cong X$ such that $h(p) \in U$. If, in addition, we may choose h to be the identity on some nonempty open subset of X, we say X is stably almost homogeneous.

THEOREM 2. Let X = [0, 1); then γX is a stably almost homogeneous indecomposable continuum.

PROOF. Throughout this proof, Cl denotes $\operatorname{Cl}_{\beta X}$. Let $x, y \in \gamma X$ and let V_0 be any open set in γX containing y. Then $V_0 = V_1 \cap \gamma X$ for some V_1 open in βX . Then there exists a V_2 open in βX such that $y \in V_2 \subseteq \operatorname{Cl} V_2 \subseteq V_1$ and $x \notin \operatorname{Cl} V_2$ unless x = y, in which case there is nothing to prove. Let U_0 be open in βX with $x \in U_0$ and $\operatorname{Cl} U_0 \cap \operatorname{Cl} V_2 = \emptyset$. Now let $U = U_0 \cap X$ and $V = V_2 \cap X$. We shall assume, with no loss of generality, that $0 < \inf U < \inf V$.

Now, define four sequences $\langle p_n \rangle_{n=1}^{\infty}$, $\langle q_n \rangle_{n=1}^{\infty}$, $\langle r_n \rangle_{n=1}^{\infty}$, and $\langle s_n \rangle_{n=1}^{\infty}$ as follows: $p_1 = \inf U$. Whenever p_i has been defined, set $q_i = \sup\{t \in U: [p_i, t] \cap V = \emptyset\}$. When q_i has been defined, set $r_i = \inf\{t \in V: t > q_i\}$. When r_i has been defined, set $s_i = \sup\{t \in V: [r_i, t] \cap U = \emptyset\}$. When s_i has been defined, set $p_{i+1} = \inf\{t \in U: t > s_i\}$. This completes the recursive definition of the four sequences. They have the following properties: $p_i < q_i < r_i < s_i < p_{i+1}$ for each i; the limit in [0, 1] of each sequence is 1, $U \subseteq \bigcup_{i=1}^{\infty} [p_i, q_i]$, and $V \subseteq \bigcup_{i=1}^{\infty} [r_i, s_i]$. We now choose two more sequences $\langle x_i \rangle_{i=1}^{\infty}$ and $\langle y_i \rangle_{i=1}^{\infty}$ so that, for each i, $r_i < x_i < y_i < s_i$ and the closed interval $[x_i, y_i]$ is a subset of V. Finally we choose two more sequences $\langle a_i \rangle_{i=1}^{\infty}$ and $\langle b_i \rangle_{i=1}^{\infty}$ such that $a_1 = 0$; $0 < b_1 < p_1$, and for i > 1 we choose $s_i < a_{i+1} < b_{i+1} < p_{i+1}$. Now define $h: X \cong X$ as follows: For each i,

- (1) h is the identity on $[a_i, b_i]$,
- (2) h maps the interval $[b_i, p_i]$ linearly onto $[b_i, x_i]$,
- (3) h maps $[p_i, q_i]$ linearly onto $[x_i, y_i]$,
- (4) h maps $[q_i, a_{i+1}]$ linearly onto $[y_i, a_{i+1}]$.

Then $h(U) \subseteq V$, and hence $\beta h(Cl(U)) \subseteq Cl(V)$, and since $x \in Cl(U)$, $\beta h(x) \in Cl(V) \subseteq Cl(V_2) \subseteq V_1$, and $\beta h(x) = \gamma h(x) \in V_0$ as desired. Furthermore, γh is the identity inside the set $\gamma X \cap Cl(\bigcup_{i=1}^{\infty} [a_i, b_i])$, which contains a nonvoid open subset of γX by Lemma 10, setting the closed set $\bigcup_{i=1}^{\infty} [b_i, a_{i+1}]$ equal to A in the lemma.

REFERENCES

1. D. P. Bellamy, Continua for which the set function T is continuous, Trans. Amer. Math. Soc. 151 (1970), 581-587. MR 42 #6791.

2. ——, A non-metric indecomposable continuum, Duke Math. J. **38** (1971), 15–20. MR **42** #6792.

3. ——, Topological properties of compactifications of a half-open interval, Ph.D. Thesis, Michigan State University, East Lansing, Mich., 1968.

4. H. S. Davis, A note on connectedness im Kleinen, Proc. Amer. Math. Soc. 19 (1968), 1237-1241. MR 40 #8021.

1973]

5. H. S. Davis, D. P. Stadtlander and P. M. Swingle, Properties of the set functions T^n , Portugal. Math. 21 (1962), 113-133. MR 25 #5501.

6. ——, Semigroups, continua, and the set functions Tⁿ, Duke Math. J. 29 (1962), 265-280. MR 26 #4325.

7. R. F. Dickman, Jr., A necessary and sufficient condition for $\beta X - X$ to be an indecomposable continuum, Proc. Amer. Math. Soc. 33 (1972), 191–194.

8. Ř. F. Dickman, Jr., L. R. Rubin and P. M. Swingle, *Characterization of n-spheres by an excluded middle membrane principle*, Michigan Math. J. 11 (1964), 53–59. MR 28 #4523.

9. — , Irreducible continua and generalization of hereditarily unicoherent continua by means of membranes, J. Austral. Math. Soc. 5 (1965), 416–426. MR 32 #6424.

J. Dugundji, Topology, Allyn and Bacon, Boston, Mass., 1966. MR 33 #1824.
R. W. Fitzgerald and P. M. Swingle, Core decompositions of continua, Fund.

Math. 61 (1967), 33-50. MR 36 #7110. 12. L. Gillman and M. Jerison, *Rings of continuous functions*, Van Nostrand, Princeton, N.J., 1960. MR 22 #6994.

13. J. G. Hocking and G. S. Young, *Topology*, Addison-Wesley, Reading, Mass., 1961. MR 23 #A2857.

14. R. P. Hunter, On the semigroup structure of continua, Trans. Amer. Math. Soc. 93 (1959), 356-368. MR 22 #82.

15. K. Kuratowski, *Topologie*. Vol. 2, 3rd ed., Monografie Mat., Tom 21, PWN, Warsaw, 1961; English transl., Academic Press, New York; PWN, Warsaw, 1968. MR 24 #A2958; MR 41 #4467.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF DELAWARE, NEWARK, DELAWARE 19711

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OKLAHOMA, NORMAN, OKLAHOMA 73069