A CLASS OF UNIVALENT FUNCTIONS

T. R. CAPLINGER AND W. M. CAUSEY

ABSTRACT. A sharp coefficient estimate is obtained for a class $D(\alpha)$ of functions univalent in the open unit disc. The radius of convexity and an arclength result are also determined for the class.

Let $D(\alpha)$ denote the class of functions $f(z)=z+a_2z^2+\cdots$ analytic in the open unit disc E and satisfying

(1)
$$|(f'(z)-1)/(f'(z)+1)| < \alpha, z \in E$$

for some α , $0 < \alpha \le 1$. The values f'(z) lie inside the circle in the right half plane with center $(1+\alpha^2)/(1-\alpha^2)$ and radius $2\alpha/(1-\alpha^2)$. The class $D(\alpha)$ is a subclass of the class of functions whose derivative has positive real part and hence a function in $D(\alpha)$ is univalent in E. If $f \in D(\alpha)$ it follows from Schwarz lemma that $f'(z) = (1-\alpha z\theta(z))/(1+\alpha z\theta(z))$, where $\theta(z)$ is analytic and $|\theta(z)| \le 1$ in E.

A class of starlike functions has been studied by Padmanabhan [5] in which f'(z) is replaced by zf'(z)/f(z) in inequality (1).

A sharp coefficient estimate for the class $D(\alpha)$ is proved in Theorem 1 using a technique of Clunie and Keogh [2]. In Theorem 2 the radius of convexity of the class is obtained and in Theorem 3 an arclength result is given.

THEOREM 1. If $f(z)=z+\sum_{n=2}^{\infty}a_nz^n$ is in $D(\alpha)$ for some α , $0<\alpha\leq 1$, then $|a_n|\leq 2\alpha/n$, $n=2,3,\cdots$. The inequality is sharp.

PROOF. Since f(z) is in $D(\alpha)$, then $f'(z)=(1+\alpha z\theta(z))/(1-\alpha z\theta(z))$, where $\theta(z)=\sum_{n=1}^{\infty}t_nz^n$ is analytic and $|\theta(z)|\leq 1$ for $z\in E$. Then

$$f'(z) - 1 = \alpha z \theta(z) \{ f'(z) + 1 \},$$

or

(2)
$$\sum_{n=2}^{\infty} n a_n z^{n-1} = \alpha \left(\sum_{n=0}^{\infty} t_n z^n \right) \left(2z + \sum_{n=2}^{\infty} n a_n z^n \right).$$

Equating corresponding coefficients in (2) gives

$$na_n = \alpha \{ (n-1)t_0 a_{n-1} + (n-2)t_1 a_{n-2} + \cdots + 2t_{n-3} a_2 + 2t_{n-2} \}.$$

Key words and phrases. Univalent, convex.

Presented to the Society, January 26, 1973; received by the editors September 5, 1972 and, in revised form, September 25, 1972.

AMS (MOS) subject classifications (1970). Primary 30A32, 30A34.

Thus a_n depends only on a_2 , a_3 , \cdots , a_{n-1} and θ for $n \ge 2$. Hence, for $n \ge 2$, it follows from (2) that

$$\sum_{k=2}^{n} k a_k z^{k-1} + \sum_{k=n+1}^{\infty} b_k z^{k-1} = \alpha \theta(z) \left\{ 2z + \sum_{k=2}^{n-1} k a_k z^k \right\},$$

which yields

$$\begin{split} \left| \sum_{k=2}^{n} k a_k z^{k-1} + \sum_{k=n+1}^{\infty} b_k z^{k-1} \right|^2 &= \alpha^2 \left| \theta(z) \right|^2 \left| 2z + \sum_{k=2}^{n-1} k a_k z^k \right|^2 \\ &\leq \alpha^2 \left| 2z + \sum_{k=2}^{n-1} k a_k z^k \right|^2. \end{split}$$

Integrating about |z|=r, 0 < r < 1, gives

$$\sum_{k=2}^{n} k^{2} |a_{k}|^{2} r^{2k-2} + \sum_{k=n+1}^{\infty} |b_{k}|^{2} r^{2k-2} \leq \alpha^{2} \left\{ 4r^{2} + \sum_{k=2}^{n-1} k^{2} |a_{k}|^{2} r^{2k} \right\}.$$

If we take the limit as r approaches 1, then

$$\sum_{k=2}^{n} k^{2} |a_{k}|^{2} \leq \alpha^{2} \left\{ 4 + \sum_{k=2}^{n-1} k^{2} |a_{k}|^{2} \right\},$$

or

$$\begin{split} n^2 |a_n|^2 &\leq 4\alpha^2 + \alpha^2 \sum_{k=2}^{n-1} k^2 |a_k|^2 - \sum_{k=2}^{n-1} k^2 |a_k|^2 \\ &= 4\alpha^2 + (\alpha^2 - 1) \sum_{k=2}^{n-1} k^2 |a_k|^2 \leq 4\alpha^2, \end{split}$$

since $\alpha \leq 1$. Thus $|a_n| \leq 2\alpha/n$ for $n \geq 2$.

Sharpness of the inequality is shown by

$$f(z) = \int_0^z \frac{1 + \alpha t^{n-1}}{1 - \alpha t^{n-1}} \, \alpha t = z + \frac{2\alpha z^n}{n} + \frac{2\alpha^2}{2n-1} \, z^{2n-1} + \cdots$$

THEOREM 2. If f(z) is in $D(\alpha)$, $0 < \alpha \le 1$, then

(i) f(z) maps $|z| < (\sqrt{2-1})/\alpha$ onto a convex domain if

$$\left(\frac{(\sqrt{2}-1)(\sqrt{3}+1)}{\sqrt{2}}\right) \le \alpha \le 1,$$

(ii) f(z) maps

$$|z| < [{\{\alpha^2 - 1 + ((1 - \alpha^2)(1 + 4\alpha - \alpha^2))^{1/2}\}}/{2\alpha(1 + \alpha)}]^{1/2}$$

onto a convex domain if

$$0 < \alpha \le (\sqrt{2} - 1)(\sqrt{3} + 1)/\sqrt{2}$$
.

The bounds in (i) and (ii) are both sharp.

PROOF. Since f(z) is in $D(\alpha)$, we have

$$f'(z) = (1 + \alpha z \theta(z))/(1 - \alpha z \theta(z)),$$

where $\theta(z)$ is analytic and $|\theta(z)| \le 1$ for $z \in E$. Then

$$\frac{f''(z)}{f'(z)} = \frac{2\alpha\{z\theta'(z) + \theta(z)\}}{1 - \alpha^2 z^2 [\theta(z)]^2}.$$

But for functions $\theta(z)$ [4, p. 168] we have

$$|\theta'(z)| \le (1 - |\theta(z)|^2)/(1 - |z|^2).$$

Using this estimate we obtain

$$\left| \frac{zf''(z)}{f'(z)} \right| \leq \frac{2\alpha|z| (|z| + |\theta(z)|)(1 - |z\theta(z)|)}{(1 - |z|^2)(1 - \alpha^2|z|^2 |\theta(z)|^2)}.$$

Therefore, $|zf''(z)/f'(z)| \le 1$ provided

(3)
$$2\alpha |z| (|z| + |\theta(z)|)(1 - |z\theta(z)|) \le (1 - |z|^2)(1 - \alpha^2 |z|^2 |\theta(z)|^2).$$

Letting |z|=r, $|\theta(z)|=x$ and t=rx, relation (3) becomes

(4)
$$2\alpha r(r+tr^{-1})(1-t) \leq (1-r^2)(1-\alpha^2t^2).$$

We want to find the largest value of ρ such that (3) holds for all z such that $|z| < \rho$ and for all $\theta(z)$, $|\theta(z)| \le 1$. This corresponds to finding the largest value of r for which (4) holds for all t, $0 \le t \le r$. Relation (4) becomes

(5)
$$H(t) \equiv (\alpha^2 r^2 - \alpha^2 + 2\alpha)t^2 + 2\alpha(r^2 - 1)t + (1 - 2\alpha r^2 - r^2) \ge 0.$$

We want to determine the largest value of r for which $H(t) \ge 0$, $0 \le t \le r$. Then f(z) will map |z| < r onto a convex domain. Since $H'(t^*) = 0$ for $t^* = (1-r^2)/[2-\alpha(1-r^2)]$ and H''(t) > 0, H(t) assumes its minimum value at t^* . We separate the proof into two cases:

Case A. $r < t^*$. Now H(t) is nonincreasing on [0, r], so H(t) > H(r) for $0 \le t \le r$. Since $H(r) = (1-r^2)(-\alpha^2 r^2 - 2\alpha r + 1)$, $H(r) \ge 0$, provided $\alpha^2 r^2 + 2\alpha r - 1 \le 0$ or $r \le (\sqrt{2} - 1)/\alpha$. Thus, f(z) maps $|z| < (\sqrt{2} - 1)/\alpha$ onto a convex domain if $r = (\sqrt{2} - 1)/\alpha \le t^*$. This restraint implies that α must lie in the interval $[\alpha_0, 1]$, where $\alpha_0 = (\sqrt{2} - 1)(\sqrt{3} + 1)/\sqrt{2}$.

The function $f(z) = -z - 2/\alpha \log(1 - \alpha z)$ shows this bound to be the best possible since

$$1 + \frac{zf''(z)}{f'(z)} = \frac{1 + 2\alpha z - \alpha^2 z^2}{1 - \alpha^2 z^2} = 0$$

for $z=(1-\sqrt{2})/\alpha$.

Case B. $t^* \leq r$. The minimum value of H(t) on [0, r] occurs at t^* , so $H(t) \geq H(t^*)$. Therefore (5) will be satisfied if $H(t^*) \geq 0$. This inequality reduces to

(6)
$$Q(r) \equiv \alpha(1+\alpha)r^4 + (1-\alpha^2)r^2 - (1-\alpha) \le 0.$$

But (6) is satisfied for $r < r_1$, where

$$r_1 \equiv [\{\alpha^2 - 1 + ((1 - \alpha^2)(1 + 4\alpha - \alpha^2))^{1/2}\}/2\alpha(1 + \alpha)]^{1/2}.$$

We shall show that if $0 < \alpha < \alpha_0$, then $t^* \le r_1$. But $t^* \le r$, if and only if $P(r) = \alpha r^3 + r^2 + (2 - \alpha)r - 1 \ge 0$. Denote the zero of P(r) in (0, 1) by r_0 . We shall show that $r_1 > r_0$ if $0 < \alpha < \alpha_0$. A tedious calculation shows that if $\alpha = \alpha_0$,

$$r_1 = \sqrt{2/(1 + \sqrt{3})} = r_0 = (\sqrt{2} - 1)/\alpha_0.$$

Also for a fixed r and $\alpha < \alpha_0$, the expression Q(r) increases with α . Thus, if (6) holds for a certain interval of values of r with $\alpha = \alpha_1$, then the condition holds for all $\alpha < \alpha_1$. Hence r_1 increases with decreasing α . But $\alpha = \alpha_0$ corresponds to $r_1 = r_0$. Thus for $\alpha < \alpha_0$, $r_1 > r_0$.

To show the estimate is sharp, we construct a function as follows. Let β be defined by

(7)
$$r_1(r_1 - \beta)/(1 - \beta r_1) = (1 - r_1^2)/[2 - \alpha(1 - r_1^2)].$$

Since $r_1 > r_0$ for $\alpha < \alpha_0$, it follows that $(1-r_1^2)/[2-\alpha(1-r_1^2)] < r_1$. Also, $r_1 < 1$. From (7) we have

$$0 < r_1(r_1 - \beta)/(1 - \beta r_1) < r_1,$$

or

$$(r_1 - \beta)/(1 - \beta r_1) < 1.$$

This implies that $(r_1^2-1)(1-\beta^2)<0$. But $r_1<1$, so $|\beta|<1$. Define $\theta(z)$ by

(8)
$$\theta(z) = (z - \beta)/(1 - \beta z).$$

Since $|\beta| < 1$, $|\theta(z)| \le 1$ for $z \in E$. Define f(z) by

$$f(z) = [1 - \alpha z \theta(z)]/[1 + \alpha z \theta(z)].$$

Then

$$1 + \frac{zf''(z)}{f'(z)} = \frac{1 - \alpha^2 z^2 [\theta(z)]^2 - 2\alpha z \theta(z) - 2\alpha z^2 \theta'(z)}{1 - \alpha^2 z^2 [\theta(z)]^2},$$

where

$$\theta'(z) = \{1 - [\theta(z)]^2\}/\{1 - z^2\}.$$

Using (7) and (8) and remembering that $Q(r_1)=0$, we have that $1+r_1f''(r_1)|f'(r_1)=0$. Therefore, f(z) is not convex in |z| < r if $r > r_1$.

THEOREM 3. If f(z) is in $D(\alpha)$ and if $L_r(f)$ denotes the length of the image of |z|=r under f(z), 0 < r < 1, then $L_r(f)=O\{\log(1/(1-\alpha r))\}$, as $r \to 1$.

PROOF.

$$L_{r}(f) = \int_{|z|=r} |f'(z)| |dz| = \int_{0}^{2\pi} |f'(re^{i\theta})| r d\theta$$

$$\leq \int_{0}^{2\pi} \left| \frac{1 + \alpha r e^{i\theta}}{1 - \alpha r^{i\theta}} \right| r d\theta$$

$$= \int_{0}^{2\pi} \left| \frac{1 - \alpha^{2} r^{2} + 2\alpha r i \sin \theta}{1 - 2\alpha r \cos \theta + \alpha^{2} r^{2}} \right| r d\theta$$

$$(9) \qquad \leq r \int_{0}^{2\pi} \frac{1 - (\alpha r)^{2}}{1 - 2\alpha r \cos \theta + (\alpha r)^{2}} d\theta + \int_{0}^{2\pi} \frac{2\alpha r^{2} |\sin \theta|}{1 - 2\alpha r \cos \theta + \alpha^{2} r^{2}} d\theta$$

$$= 2\pi r + 2r \int_{0}^{\pi} \frac{2\alpha r \sin \theta}{1 - 2\alpha r \cos \theta + \alpha^{2} r^{2}} d\theta$$

$$= 2\pi r + 4r \log \frac{1 + \alpha r}{1 - \alpha r} = O\{\log 1/(1 - \alpha r)\}.$$

The first integral in (9) is a Poisson integral and the second can be evaluated directly.

REMARK. We state without proof that if $f(z) \in D(\alpha)$ and if $A_r(f)$ denotes the area of the image of |z| < r under f(z), 0 < r < 1, then

$$A_r(f) \le \pi \{-3 - (4/\alpha^2 r^2)\log(1 - \alpha^2 r^2)\}.$$

The inequality is sharp.

REFERENCES

- 1. C. Carathéodory, Funktionentheorie. Vol. II, Verlag Birkhäuser, Basel, Switzerland, 1950. MR 12, 248.
- 2. J. Clunie and F. R. Keogh, On starlike and convex schlicht functions, J. London Math. Soc. 35 (1960), 229-233. MR 22 #1682.
- 3. T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc. 104 (1962), 532-537. MR 25 #4090.
 - 4. Z. Nehari, Conformal mapping, McGraw-Hill, New York, 1952. MR 13, 640.
- 5. K. S. Padmanabhan, On certain classes of starlike functions in the unit disk, Indian Math. Soc. J. 32 (1968), 89-103. MR 39 #2965.

DEPARTMENT OF MATHEMATICS, MEMPHIS STATE UNIVERSITY, MEMPHIS, TENNESSEE 38152

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSISSIPPI, UNIVERSITY, MISSISSIPPI 38677