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A CLASS OF UNIVALENT FUNCTIONS
T. R. CAPLINGER AND W. M. CAUSEY

ABSTRACT. A sharp coefficient estimate is obtained for a class
D(a) of functions univalent in the open unit disc. The radius of
convexity and an arclength result are also determined for the class.

Let D(«) denote the class of functions f(z)=z4a,z%+- -+ analytic in
the open unit disc £ and satisfying

@ @ —=DIf @+ D <« z€E,

for some a«, 0<a=1. The values f’(z) lie inside the circle in the right half
plane with center (14+a2)/(1—a?) and radius 2«/(1 —a?). The class D(«)
is a subclass of the class of functions whose derivative has positive real
part and hence a function in D(«) is univalent in E. If f € D(x) it follows
from Schwarz lemma that f'(z)=(1 —az0(2))/(14+«z0(z)), where 6(2) is
analytic and |6(z)| =1 in E.

A class of starlike functions has been studied by Padmanabhan [5] in
which f'(z) is replaced by zf”(z)/f (z) in inequality (1).

A sharp coefficient estimate for the class D(«) is proved in Theorem 1
using a technique of Clunie and Keogh [2]. In Theorem 2 the radius of
convexity of the class is obtained and in Theorem 3 an arclength re-
sult is given.

THEOREM 1. If f(2)=2z4> 2, a,z" is in D(a) for some «, 0<a=l1,
then |a,|<2a/n, n=2,3, - - - . The inequality is sharp.

PrROOF. Since f(z) is in D(a), then f'(z)=(1+waz0(2))/(1—az0(z)),
where 0(z)=>,>, t,z" is analytic and |0(z)| =1 for z € E. Then

f@ = 1=0az6(2){f'(2) + 1},

or

) inanz"‘l = a( it,,z”) (22 + inanz").
n=2 n=0 n=2

Equating corresponding coefficients in (2) gives

na, = a{(n — Dtga, . + (n — 2tia,_ o + -+ + 2t,_sa, + 2t,_,}.
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Thus a, depends only on a,, a3, - -, a,_; and 6 for n=2. Hence, for
n=2, it follows from (2) that

Eka,cz"“1 + Z byz¥ ' = aG(z){Zz +'§:lka,,z"},

k=n+1 k=2
which yields
2
Zka ZF 1 4 Z bkz'"1 = «?16(2)|* 22 +zkakz
k=n+1 k=2
n—1
=of2z + Z kakz
=2

Integrating about |z|=r, 0<r<]1, gives

n—1
Zk2la |2 2k—2 + z |b |2 2k—2<“{4r +zk2|a |2 2]:}

k=2 k=n+1 k=2

If we take the limit as r approaches 1, then

n—1
SKlal 5 ot +3 K o)
k=2 k=2

or
n—1 n—1
nla,|® < do® + o® > k* |a,l® — Zk2 lag?
k=2
n—1
=da® + (& — 1) D K*|a,[* < 4,
k=2

since «=<1. Thus |a,| =2«/n for n=2.
Sharpness of the inequality is shown by

14"t oct"‘1 Qaz" 20 .4
$RE L 2 ey
1@ f t"‘1 = n 2n—1

THEOREM 2. Iff(2) is in D(a), 0<a =1, then
(i) f(z) maps |21 <(y/2—1)/a onto a convex domain if

((J2 - 1\)/(2\/3 + 1)) <zl
(ii) £ (2) maps
|zl < [{a® — 1+ ((1 — a®)(1 + 4 — a®))%}2a(l + «)]'/2
onto a convex domain if

0 < a=(y2- D3+ D2
The bounds in (i) and (ii) are both sharp.
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PROOF. Since f(z) is in D(«), we have

[ @ =0+ az6(2)/(1 — az6(2)),

where 6(z) is analytic and |0(z)| <1 for z € E. Then

f(2) _ 20{z0'(z) + 6(z)}

f@ 1=a2@F
But for functions 6(z) [4, p. 168] we have

16" = (1 = 16@)D/A — |zI?).

Using this estimate we obtain
#f"(2) | L 2alz| (2] + 10z)D(A — |20(2)l).
f'@ 17 (=121 = «® |z 16(2)I%)
Therefore, |zf"(2)[f’(z)| =1 provided
() 2xlz] (Iz] + 6@ — 126(2)]) = (1 — |21 — o*|2]* |6(2)]?).

Letting |z|=r, |6(z)|=x and t=rx, relation (3) becomes

@) 2ur(r + tr (1 — 1) < (1 — r2)(1 — o).

We want to find the largest value of p such that (3) holds for all z such that
|z|<p and for all 6(z), [6(z)|=1. This corresponds to finding the largest
value of r for which (4) holds for all 1, 0=<¢=r. Relation (4) becomes

(5) H{) = (a2 — o + 20)2 + 20(r2 — 1)t + (1 — 20r2 — r?) = 0.

We want to determine the largest value of r for which H(#)=0, 0=¢=r.
Then f(z) will map |z|<r onto a convex domain. Since H'(t*)=0 for
t*=(1—r?/[2—a(1—r?)] and H"(t)>0, H(t) assumes its minimum value
at t*. We separate the proof into two cases:

Case A. r<t*. Now H(t) is nonincreasing on [0, r], so H(t)>H(r)
for 0=<t=r. Since H(r)=(1—r3(—oa2r?—2ar+1), H(r)=0, provided
a2r?42ar—1=0 or r=(/2—1)/a. Thus, f(z) maps |z|<(,/2—1)/« onto
a convex domain if r=(,/2—1)/a=t*. This restraint implies that o must
lie in the interval [«g, 1], where ay=(/2—1)(/3+1)/{/2.

The function f(z)=—z—2/« log(l —az) shows this bound to be the
best possible since

zf"(2) 1420z — o’z? _

=0
f'(2) 1 — o?2?
for z=(1—/2)/a.
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Case B. t*=r. The minimum value of H(¢) on [0, r] occurs at t*, so
H(t)= H(t*). Therefore (5) will be satisfied if H(1*)=0. This inequality
reduces to
6) oM =a(l +)rt+ (1 —ad)Hr2— (1 —a) £0.

But (6) is satisfied for r<r,, where
ri=[{e2— 14+ (1 — (1l + 4o — a))V2}2a(1 + o)]V2.

We shall show that if 0<a<a,, then t*=<r,. But t*=<r, if and only if
P(r)=ar3+r?+4(2—a)r—120. Denote the zero of P(r) in (0, 1) by r,. We
shall show that r;>r, if 0<a<a, A tedious calculation shows that if
A=0g,

ri=2[(1 +/3) =ro = (/2 — D)]aq.

Also for a fixed r and « <«,, the expression Q(r) increases with «. Thus, if
(6) holds for a certain interval of values of r with a=«,, then the con-
dition holds for all «<«,. Hence r, increases with decreasing o. But a=u«,
corresponds to ry=r,. Thus for a <oy, r;>r,.

To show the estimate is sharp, we construct a function as follows. Let 8
be defined by

Q) r(ry = BIA — fry = (1 — r)/2 — (1 = r)].

Since r;>r, for a<ay, it follows that (1—r2)/[2—a(l—ri)]<r,. Also,
r;<1. From (7) we have

0<ri(ry = B)(L = Bry) <ry,
(ry — B)/(1 — Bry) < 1.
This implies that (r;—1)(1—p2)<0. But r,<1, so |f|<1. Define 6(z) by

(® 0(2) = (z = B)/(1 — B2).
Since |B| <1, |6(z)| =1 for z € E. Define f(z) by

f(@ = [1 — az6(2)}/[1 + «z0(2)].

or

Then

zf'(z) 1 — «?2%[0(2)]? — 2az0(z) — 2az%0'(z)
f@ 1 — o*2°[8(2)]?
0'(2) = {1 — [6(P}/{1 — 2%}.

Using (7) and (8) and remembering that Q(r;)=0, we have that 14
rif”(r)[f (r))=0. Therefore, f(z) is not convex in |z| <r if r>r;.

1+

b

where
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THEOREM 3. If f(2) is in D(«) and if L.(f) denotes the length of the
image of |z|=r under f(2), 0<r<1, then L(f)=0{log(1/(1—ar))}, as
r—1.

PROOF.
27
Ly =[ 7@ = [ e rao
27 0
_J‘ 1+ are®” do
1 — ar®
=f 1 —or? + 2ar isin 6 v do
o | 1 —2arcosf + a’?
27 — 2 27 2 1ol
©) < "f 1 — (ar) _ do +f 2ar?® [sin 0] 6
o 1 — 2arcos 6 + (ar) o 1 — 2arcos 0 + a’r®
T 2ar sin 6
=2 2 d
™+ rJ; 1 — 2ar cos 0 + o®r®
14+ ar

= 2nrr + 4rlog N = Oflog 1/(1 — ar)}.
— ar
The first integral in (9) is a Poisson integral and the second can be evalu-
ated directly.
REMARK. We state without proof that if f(z) € D(«) and if A4,(f)
denotes the area of the image of |z| <r under f(z), 0<r<1, then

A(f) £ n{=3 — (4/arD)log(l — a?r?)}.
The inequality is sharp.
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