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A TOPOLOGICAL PROOF OF A THEOREM OF KNESER

BJORN FRIBERG1

Abstract. We give an elementary topological proof that the

orthogonal groups 0(2) and 0(3) are strong deformation retracts

of the space of homeomorphisms (with the compact-open topology)

of R2 and S2, respectively. We also deform the space of bounded

homeomorphisms of R- to S1.

A well-known theorem of Kneser [6] says that the orthogonal groups

0(2) and 0(3) are strong deformation retracts of the space of homeo-

morphisms (with the compact-open topology) of 7?2 and S2, respectively.

His proof, in the setting of complex analytic function theory, is unele-

mentary and untopological and therefore not accessible to many topolo-

gists.

The main purpose of this paper is to give an elementary topological

proof of his theorem. Thus we prove:

Theorem 1. The rotation group 5*0(2) is a strong deformation retract

of the space 7/+(7\2) of orientation preserving homeomorphisms of the plane.

Corollary 2.    0(2) is a strong deformation retract of H(R2).

Corollary 3.    0(3) is a strong deformation retract of H(S2).

We also obtain the following:

Corollary 4. The space BH(R2) of bounded homeomorphisms of the

plane deforms to S1.

The methods used in this paper are also desirable as they function well

in higher dimensions.

1. Definitions and preliminaries. Let 7?2, S1, and S2 denote Euclidean

2 space, the unit spheres in Euclidean 2 and 3 space, respectively. Let Br

denote the ball of radius r in R2. H(X) will denote the space of homeo-

morphisms of X, with the compact-open topology. H+iX) will denote

Presented to the Society, June 19, 1971; received by the editors May 8, 1972.

AMS (MOS) subject classifications (1970). Primary 57E05, 57A05, 58D05.
Key words and phrases. Homeomorphism, deformation, isotopy, topological group,

bounded homeomorphism.

1 This work represents part of the author's dissertation at the University of California,

Los Angeles, under the direction of D. S. Gillman and R. C. Kirby.

© American Mathematical Society 1973

421



422 BJÖRN   FRIBERG [July

those homeomorphisms which preserve orientation. A basis for the

neighborhoods of the identity = id consists of sets of the form A(C, e) =

{«I \hix)—x\<e all x e C), where C is compact and |-| denotes the usual

norm. In this paper A will be a subset of R2 or S2, and we will usually

just write H in place of //(A) when it is clear what A we are regarding.

By [1], [2], //will then be a topological transformation group on A and

compositions, inverses, and evaluations will be continuous. If C is a

compact subset of R2, h e HiR2), and x e «(C), then by xadx{hiC)}

(Radx{«(C)}) we will mean the radius of the largest (smallest) ball centered

at x which is contained in (contains) «(C). If x=origin, it is usually

omitted.

An isotopy ht of « e H is a path in H starting at h. We say an isotopy

ht for each h e Gc H is canonical if the function from Gxl into H defined

by («, t)—>ht is continuous, i.e., defines a deformation of G in H.

If O^/^l and a<b, c<d, by Ttia;b;c;d) we mean the homeo-

morphism of R2 which is fixed on Ba and off Bd and takes a ray emanating

from the origin onto itself as follows. Tt is fixed on [0, a] and on [d, co),

and takes b to (1 — t)b + tc and is linear on [a, b] and [b, d]. Ttia; b; c; d)

is easily seen to be continuous viewed as a function from a subset of R5

into HiR2).

2. Radial squeezing. The following lemma is well known. Our version

varies slightly in that the orthogonal group is to remain invariant. For ease

of notation we regard R2 as [— oo, oo)x51 with {—oojxS1 squeezed to

the origin. Then by the ball Br of radius r, we mean the set [— co, r] x S1.

Lemma 5. Let « e HiR2) fix the origin. Then « is canonically isotopic to

hm,withBi_1<=hcoiBj)<=BjforälljeJ. If h e 0(2), then ht = hallte[0, co].

Proof. By squeezing we can assume that B_x^h(B0)^B0. Inductively

assume that h has been canonically isotoped to «„, with B^^hJB^^Bj

for all \j\^n.

Set

an = rad h~\Bn_x),

bn = min [n + 1 ; rad {«^(B^+i)}],

c„ = min [n + 1; rad {hn(Bn+x)}],

<D„ = hn ° Tx(an - l;n;an;bn)° h~l,

hn+t = <S>ñl ° TJn - 1; c„; n + 1; n + 2) «<&„ o hm

hn+Ui+t = T4(("; dn;n + l;dn+l)° hn+x/t,

where

dn = Radhn+x/i(Bn+x)   forO^/^i
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Thus the radial structure of hn gives us the homeomorphism <!>„ which

puts hn(Bn) inside Bn^, and is fixed off Bn+1. We then use the radial

structure given by <P„ to slide hn(Bn+1) outside of Bn+1, leaving hniBn)

alone. A final squeeze then puts hn(Bn+1) where it belongs. We next

perform the analogous isotopy to hn+lj2 near 7L„ to get hn+1, with

ÍhcW'í)c Bi    for |y| <«+ 1.

One easily checks that limit,,.^ hn=hao exists, and has the desired

properties. That the isotopy is canonical follows from the continuity of

thea„,è„, c„, dn.

3. Bounded homeomorphisms. We say that « is bounded by M if

\h(x)-x\ = M for all x e R2. We denote by MBH(R2) the collection of all

homeomorphisms bounded by M, and by BH(R2)=[JMMBH(R2), the

group of all bounded homeomorphisms. If« is bounded, the Alexander

isotopy gives an isotopy of« to the identity; namely

ht = <f>t°h°4>il,     o = t<i,

= id, t = 1,

where <pteH(R2) is defined by <f>t(x) = (l — t)x. However the Alexander

isotopy is not canonical. We do have the following:

Lemma 6. The Alexander isotopy is canonical when restricted to
MBH(R2).

Proof. Given « and t=l with N(Bk, s) a neighborhood of «j=id.

Choose t0> 1 —e/M. Then for t>t0 and any h e MBH(R2), we have that ht

is bounded by e, i.e., ht e N(Bk, e).

Lemma 7. Let he H+(R2) be bounded by M on the first factor, i.e.,

\U1h(x,y)—x\ = M for all (x,y) e R2. Then h is canonically isotopic to the

identity. (Here Li,, /=1, 2, means projection on the ith factor.)

Proof. Given «, we define a sequence of functions f.R-^-R, j eJ,

such that

(i)/i</¿+i.
(ii) G2j_1<h(G2j)<G2j+1

where G¡ is the graph of/,-, i.e., the set {(x,f¡(x))\x e R] and "<" in (ii)

means lies below in the usual sense.

Set

/o = 0,

/i(*o) = max[l ; sup{n2 ° h(x, 0) | \x — x0\ = 2M}],

f^ixo) = min[-1 ; inf{n2 o h(x, 0) | \x - x0\ = 2M}},

f2(x0) = max[l +f1(x0); sup{n2 ° h^ixj^x)) \ \x - x0\ = 2M}],

f_2(x0) = min[-l +/_1(x0); inf{n2 o h^(x,f^(x)) \ \x - x0\ ^ 2M}].
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For/^l,/í+2 (f_u+2)) is defined inductively with/m (/_(m)) in place of

fi-i (f-a-v) in the formula for/,. (/_,).
Define Oj(n) e H+(R2) to be the vertical homeomorphism, which on

each fiber {x}x/? takes (x,j) to (x,fj(x)) and is linear on the segments

[j,j+l], for all je J. 0>x(h) is isotopic to the identity via $>t(h) in the

natural way.

Set ht=Q>t(hyi o h o 0((«). If R¡ = {(x,j)\x e R}, then from (ii) it follows

that R2j-X<hx(R2j)<R2j+x, i.e. |1I2 o ht(x,y)-y\<2 while

\nxohx(x,y)-x\

is still bounded by M.

One easily checks that /z—>-0((«) is continuous and that the isotopy is

canonical. The result now follows from Lemma 6.

4. Lifting homeomorphisms. We consider the following covering map

À:R2^-RxS, defined as follows. Let e.R-^-S be the exponential covering

map given by e(r)=en". We take X to be an approximation to id x e which

equals id x e off a compact neighborhood of the point (id x e)( 1, 0) = ( 1, 0)

and which is the identity on a smaller compact neighborhood C of (1, 0).

Thus in "wrapping" R2 = R+xR around R+xS=RxS, we merely place

our finger over the point (I, 0) which fixes C.

Lemma 8. Let X be as above. Let « e H(R2) fix the origin and (1,0).

Then h\R^0e H(RxS) lifts (via X) uniquely to h e H(R2) fixing (1,0).

Furthermore « ii canonically isotopic to «.

Proof. The existence and uniqueness of « follows from Hu [4, p. 90].

Clearly «=« on h~l(C)r\C. We define

ht = r o ^(~1 o r_1 ° «_1 ° « o t o (/)t o r_1    for 0 ^ t < 1,

= «    for t = 1,

where r is translation by the point (1,0) and <f>t(x) = (l— t)x.

Since r_1 o h-1 oho r=id on a neighborhood of the origin, ht is clearly

an isotopy. That it is a canonical isotopy follows from the continuity of

the functions «—>-« and «-*-rad(1 i0){Cn/i_1(C)}, which can easily be estab-

lished by standard & — e arguments.

5. Proof of Theorem 1. Let « e H+(R2). We will give a canonical

isotopy «(, 0^f ^4, so that «4 e SO(2) is a strict rotation. Furthermore if

h e 50(2), then ht=h all t.
Step il). By canonically translating along the line segment determined

by /¡(O) and 0, we get hx fixing the origin.

Step (2). We now apply Lemma 5 to hx to get «2 which is small on the

radial factor, as in the conclusion of Lemma 5.

Step (3). Consider «2(1, 0) = (r, 0h), written in polar coordinates. By

canonically translating in a coordinate neighborhood of (1, 6h) we get h3,
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with«3(l, 0) = (1, dh) in polar coordinates. Let ph e 50(2) be rotation by

6h. Set g=p^1 ° «3. Then g fixes the origin and (1,0). We canonically

isotope «3 to ph by canonically isotoping g to the identity.

Step (4). g satisfies the hypothesis of Lemma 8. Furthermore g will

be bounded on the first 7? factor by 2 since «3 (hence g) was so bounded

radially. Thus g satisfies the hypothesis of Lemma 7. This completes the

canonical isotopy of g to the identity, and of «3 to ph=hi.

One easily checks that if « e SO(2), then «¡=« all /. In Step (4), g

will then be the identity, and so will be the isotopy from g to the identity.

(Note, in Step (4), g may move the origin, hence the isotopy from «3 to «4

will also. Thus, if we wish, we could translate this part of the isotopy,

which would then fix the origin.)

6. Proof of the corollaries.

Proof of Corollary 2. Just apply the analogous isotopy to the other

component.

Proof of Corollary 3. Let p, q, and r correspond to the origin, 00,

and (1, 0) under stereographic projection. Let « e H(S2) be given.

Step I. If h(p) and h(q) are antipodal, leave « alone. Otherwise, slide

hip) and h(q) along the geodesic they form until they are antipodal. More

precisely, we define (f>t(x,y)e H(S1), x, y e S1, by <pt(x, y) = id if x and y

are antipodal. If not, let a and b be the midpoints of the shorter and longer

arcs from x to y. Let c and d be the midpoints of the arcs from a to b,

containing x and y respectively. Then <f>t(x, y) is the linear homeomorph-

ism of S1 determined by a-+a; b-+b; x-*-(l— t)x+tc; y—>-(l—t)y+td.

Consider S2 as 5xx[—1, +1] with each end squeezed to a point. Set

f t(x, y) = <f>tix,y)x id eH(S2). Thus we set ht = ipt(h(p), h(q)) ° «. ht is
clearly canonical since if h(p) and h(q) are almost antipodal, the isotopy

is small. In much the same manner we slide hx(r) to the midpoint of the

arc through «,(/>), hx(q), and «,(/■), getting «2 which then uniquely deter-

mines 6 e 0(3). Setting g=d~1 ° h2 fixes p, q, and r.

Step 2. Consider g|S2_jS} e H+(R2) fixing the origin and (1, 0). As in

the proof of Theorem 1, g is is canonically isotopic to the identity. We

extend the isotopy to S2 and thus get that «2 (and «) is canonically isotopic

to 0.

Proof of Corollary 4. Regard -S1=[0, 1] with the endpoints identi-

fied. Define an embedding i:S1-^BH(R2) by (for 0=t<l)

¿(i) = rotation by 2irt   on B1/n_t),

1                     2
= rotation by {2 - r(l - t)}2Trt    on ST,     -< r <-,

= id   off B2/(1_,)

for t=l, i0) = id.
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Since limits /(r)=id, i is clearly an embedding. Let h e BH(R2). We

canonically isotope « into ¡(S1) by replacing SO(2) by /(S1) in the proof of

Theorem 1 and essentially performing the isotopy given by Theorem 1.

However ht might not be bounded, so we modify the isotopy slightly.

In particular, applying Steps 1 and 3 we get «2 fixing the origin with

«2(1, 0)=(1, 6h) in polar coordinates. Set g=p~* ° «2, where o e ¡(S1)

is uniquely determined by dh. Then g is bounded and fixes the origin and

(1,0). We isotope g to the identity through bounded homeomorphisms

as follows. We alter the isotopy of Lemma 5 and the first part of the

isotopy of Lemma 7 to be fixed on a neighborhood of (1, 0). Then per-

forming Steps 2 and 4 to g gives us g e MBH, with g=g on a neighborhood

Ng of (1,0) with g^-rad,^(»(A;,) continuous. Then g is canonically isotopic

to g through bounded homeomorphisms by the isotopy of Lemma 8,

while g is canonically isotopic to the identity through bounded homeo-

morphisms (by the Alexander isotopy).
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