SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

THE NONEXISTENCE OF COMPLEX HAAR SYSTEMS ON NONPLANAR LOCALLY CONNECTED SPACES

GEORGE W. HENDERSON AND BRIAN R. UMMEL

Let X be a compact Hausdorff space and C(X) be the complex linear space of complex valued continuous functions defined on X. An n-dimensional subspace L of C(X), $n \ge 2$, is called a *complex Haar system* on X if every nonzero member of L has at most n-1 zeros. The purpose of this note is to prove

Theorem 1. If X is locally connected, then a necessary and sufficient condition for the existence of a complex Haar system of X is that X be imbeddable in the plane.

This affirms a conjecture of J. Overdeck and generalizes the theorem of Schoenberg and Yang [3] in which X was assumed to be finite polyhedral. To see how their proof extends to the locally connected case, let S^2 be the 2-sphere, K_5 and $K_{3,3}$ be the primitive skew curves (i.e. the complete graph on 5 vertices and the houses and wells configuration), and C_1 and C_2 be the Claytor curves as described on the first page of [1].

THEOREM 2 (CLAYTOR [1]). If X is a nonplanar Peano continuum, then X contains a subspace homeomorphic to one of S^2 , K_5 , $K_{3,3}$, C_1 , or C_2 .

Since a complex Haar system on X induces one on each of its subspaces, it suffices to show that none of these five spaces admits a complex Haar system. This was done in [3] for S^2 , K_5 , and $K_{3,3}$. Now observe that C_j contains a nonempty open set U_j such that $C_j - U_j$ is homeomorphic to C_j , j=1 or 2. If there were a complex Haar system on C_j , then $C_j - U_j$ would be imbeddable in the plane by Lemma 1 of [2]; but this is impossible since $C_j - U_j$ is homeomorphic to C_j . This proves necessity, and the sufficiency is obvious.

Received by the editors May 12, 1971.

AMS (MOS) subject classifications (1970). Primary 41A50, 30A82; Secondary 54C25.

REFERENCES

- 1. Schieffelin Claytor, Peanian continua not imbeddable in a spherical surface, Ann. of Math. 38 (1937), 631-646.
- 2. John M. Overdeck, On the non-existence of complex Haar systems, Bull. Amer. Math. Soc. 77 (1971), 737-739.
- 3. I. J. Schoenberg and C. T. Yang, On the unicity of solutions of problems of best approximation, Ann. Math. Pura Appl. 54 (1961), 1-12. MR 25 #5324.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN-MILWAUKEE, MILWAUKEE, WISCONSIN 53201