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LATTICES1

TAE HO  CHOE

Abstract. In the category of all compact distributive topological

lattices and their continuous lattice-homomorphisms, it is shown

that every projective object is either zero-dimensional or not

/-compact.

By a topological lattice we mean a lattice together with a Hausdorff

topology under which the two lattice operations are continuous. All

terminologies and notation of lattices and category theory used in this

paper are the same as in [2] and in [6], respectively.

Let =S? be a category of topological lattices and their continuous lattice-

homomorphisms. By a projective object P in f£, we mean that, for an

onto morphism f:A~>-B and a morphism g:P->-B in Ü?, there exists a

morphism h:P^-A in £é? such that/«=g.

Let / be the unit interval [0, 1] of reals with the usual topology and the

usual order structure. For a topological lattice L, if L is topologically and

algebraically isomorphic with a (closed) sublattice of a product of unit

intervals, then we say that L is (/-compact, respectively) /-regular.

Lemma. Let f£ be a category of topological lattices which is closed

hereditary and finitely productive. If P is a connected projective object in jSf

then, for every prime ideal A of P, either A or P\A is dense in P.

Proof. We may assume that J¡? is nontrivial i.e., J? has at least one

nondegenerate object. Then the two element chain lattice 2 = {0, 1} with

the discrete topology is always in .5?. Clearly, the closures A~ and (P\A)~ are

both closed sublattices of P. Let g = (/l-x{0})U((P\,4)-x{l}). Then Q is

a closed sublattice of Px2.

Now lety be the inclusion of Q into Px2, and let/) be the projection of

Fx2 onto P. Then pj.Q-*P is onto. Since P is projective, for pj and the

identity /' of P, there exists a morphism f:P—>-Q in ¿if such that pjf=i-

Since P is connected, either f(P)<=A~x{0} or f(P)^(P\A)~x{l}. If
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/(P)c^x{0), thenP=/_1(A~x{0}). On the other hand, we can show

that f^(A~ x {0})=A- It suffices to show that f^(A~ X {0})c A". Let x g

/_1(A"X{0}). Suppose that/(x)=(j, 0) g A^x{0}. Since pjf=i, we have

x=y. Thus x g A". Hence A is dense in P. Similarly, for the case that

f(P)c(P\A)~x{l},P\A is dense in P.

Remark. With a few additional conditions to those of the above

lemma, it can be generalized to some other Hausdorff topological algebras

of finite type as follows:

Let 31 be a category of Hausdorff topological algebras of the same

finite type which is closed hereditary and finitely productive, and let P

be connected projective in 31. If

(i) the two point algebra 2 with the discrete topology is in 3Í,

(ii) A and P\A are both subalgebras of Pand Q = (A~x{0})'U((P\A)-x

{1}) is a closed subalgebra of Px2 then either A or P\A is dense in P.

For example, in the case of Hausdorff topological spaces (as trivial

algebras) (i) and (ii) are always true and, in the case of topological semi-

groups, if A is a prime ideal of P and the two point meet semilattice with

discrete topology is in 31, then (i) and (ii) are always true.

Theorem. Let ^ be a category of topological distributive lattices which

is closed hereditary and finitely productive. Then every projective object in

=S? is either totally disconnected or not I-regular.

Proof. Let P be projective in =£?. Suppose that P is not totally dis-

connected. Then we have a connected component C of P with more than

two points, and it is a closed convex sublattice of P [4]. Let /= [a, ß] be a

nondegenerate closed interval of C. Then / is also a closed interval in P,

which is connected since C is. Further, it is easy to see that the map

f.P-*J=[oL, ß] defined by f (x) = aV(xAß) is a retraction. Hence / is also

projective in =£?. Now we show that / does not have a nonconstant con-

tinuous lattice-homomorphism from / into /. Indeed, if g'J^-I is a non-

constant continuous lattice-homomorphism, then g(J)=[r, s]<^I with

r<s. It is easy to see that/_1([r, ?]) (r<t<s) is a closed prime ideal of/,

and it is neither dense in / nor is its complement dense in /. This is a

contradiction of the lemma.

Corollary 1. Let Q) be the category of all compact distributive lattices.

Then every projective lattice in S¿ is either zero-dimensional or not I-compact.

It is known [7] that if L is a compact distributive lattice then L is /-

compact iff L is completely distributive. Hence by the theorem every

projective lattice in the category of all compact completely distributive

lattices and their continuous lattice-homomorphisms is zero-dimensional.



608 T.  H.   CHOE

It is shown [3] that, in the category of all zero-dimensional compact

distributive lattices, P is projective iff P is a retract of the residually finite

completion of a free distributive lattice.

Hence we have the following:

Corollary 2. Let m3> be the category of all compact completely

distributive lattices. Then every projective lattice in ^SÏÏ is a retract of the

residually finite completion of a free distributive lattice.

Remark. It is known [5] that there actually exists a compact distribu-

tive lattice which is not /-compact. However, the author does not know

whether a projective one which is not /-compact exists in Q>. If such a

projective P exists in Q), then P must have the following properties

(i)-(iii):
(i) P has a nondegenerate connected retract which has no nonconstant

continuous lattice-homomorphism into /.

(ii) P\p, where xpy iff x and y belong to the same connected component

of P, is projective in <€^.

(iii) If F is connected then, for any upper (or lower) bound x of a non-

empty open subset of P, xVP (or jcaF respectively) has void interior.

References

1. L. W. Anderson, One dimensional topological lattice, Proc. Amer. Math. Soc. 10

(1959), 715-720. MR 21 #6401.
2. G. Birkhoff, Lattice theory, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 25,

Amer. Math. Soc, Providence, R.I., 1967. MR 37 #2638.
3. T. H. Choe, Projective zero-dimensional compact associative distributive universal

algebras, (submitted).

4. -, Locally compact lattices with small lattices, Michigan Math. J. 18 (1971),

81-85. MR 43 #8055.
5. J. D. Lawson, Lattices with no intervalhomomorphisms, Pacific J. Math. 32 (1970),

459-465. MR 41 #1019.
6. B. Mitchell, Theory of categories, Pure and Appl. Math., vol. 17, Academic Press,

New York, 1965. MR 34 #2647.
7. D. P. Strauss, Topological lattices, Proc London Math. Soc. (3) 18 (1968), 217-

230. MR 37 #3532.

Department of Mathematics, McMaster University, Hamilton, Ontario,

Canada


