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LOCAL  BOUNDEDNESS  AND  CONTINUITY  FOR A

FUNCTIONAL EQUATION  ON  TOPOLOGICAL  SPACES1

C.   T.   NG

Abstract. It is known that the locally bounded solutions/of

Cauchy's functional equation f (x)+f (y)=f (x+y) on the reals

are necessarily continuous. We shall extend this result to the func-

tional cçpfoûon f (x)+g(y)=h(T(x,y)) on topological spaces.

1. Introduction. Let X, Y be topological spaces and let /: X—-R (the

reals), g: Y^>-R, T:Xx Y^R and h:T(Xx Y)^»R be functions satisfying

the functional equation

(1) f(x)+g(y) = h(T(x,y))

for all x e X, y e Y. We shall give some sufficient topological assumptions

on Xand T so that the local boundedness and nonconstancy of/insure

that g is continuous. The method was suggested by the work of J. Pfanzagl

in his paper [6] generalizing a result of G. Darboux [2].

2. Main theorems.

Theorem 1. For equation (1), if each pair of points of X is contained in

the continuous image of some connected and locally connected space (for

instance, when X is connected and locally connected or when X is pathwise

connected), T is continuous in each of its two variables and fis nonconstant

and locally bounded from above {or from below) at each point of X, then g

is continuous on Y.

Proof. Let a, b e X be such that f (a) ¿¿f(b). There exist a connected

and locally connected space X and a continuous mapping y:X—>-X such

that a, b e y(X). The functions/:=/° y and f with f(x,y): = T(y(x),y)

for x e X, y e Y, now satisfy the induced functional equation

(Ï) f(x)+g(y) = h(f(x,y))
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for all x e X, y e Y. The local boundedness of/passes to /and the con-

tinuity of T in each variable passes to f. With this observation there is no

loss of generality if we suppose from the very beginning that Y is connected

and locally connected.

Since X is connected and / is nonconstant on X, f cannot be locally

constant on Y and there exists a point e e A'such that/is nonconstant on

every neighbourhood of e. As X is locally connected and / is locally

bounded from above at e there exists an open connected neighbourhood

U of e on which / is bounded from above. Thus / is nonconstant and

bounded from above on the connected and locally connected set U.

Let jclf x2 e U be such that /(jcx)9if(x2). It follows from equation (1)

that T(x1,y)^T(x2,y) for all ye Y.

Let y0e Y be arbitrarily given and we shall prove the continuity of g

at y0. We may suppose that t1: = T(x1,y0)<T(x2,y0)=:t2. By Lemma 1

in Pfanzagl [5] there exists a connected fis U such that T(B,y0) = ]i1; t2[.

Let £>0 be arbitrarily given. Since sup/(Ä)<oo, there exists x0eB

such that/(x0)^/(x) —£ for all x e B.

Let M: = {yeY:t1<T(x0,y)<t2}. Then y0 e M and, as T(x0,-) is

continuous on Y, M is a neighbourhood of y0.

For each y e M, T(x0, y) e ]tu t2[ = T(B, y0) and so there exists xe B

such that T(x0,y) = T(x,y0). Thusf(x0)+g(y)=h{T(x0,y))=h(T(x,y0)) =

f(x)+g(y0)- Asf(x0)^f(x)-e we have g(y)^g(y0) + e.

Let x3, xt e B be arbitrarily chosen such that t3 : = T(x3, y0) < T(x0, y0) <

T(xt,y0)-:tt.
Let N: = {ye F: 7(x3, y)<r(x0,;>0)<:r(x4, y)}. Then y0eN and, as

T(x3, •) and T(x¿, ■) are continuous on Y, N is a neighbourhood of y0.

For each y e N, T(B, y) is an interval of R as 5 is connected and

T(-,y) is continuous. Furthermore, T(x3,y) and r(x4,j) are points of

T(B,y)  with   TU3,y)<r(*0,y0)<7(x4,y)  and  so   T(x0,y0) e T(B,y).

Hence there exists x e B such that T(x0, y0) = T(x, y). From this we have

f(x0)+g(y0)=f(x)+g(y). As f(x0)^f(x)-e we have g(y0)-s<g(y).

MC\Nis then a neighbourhood of j0 and gO^)-e=g(y)=g(yo) + E f°r

every y 6 MdN. This proves the continuity of g at y0.

Remark 1. Lemma 1 in Pfanzagl [5] is given as: let A'be a connected

and locally connected Hausdorff space, 6:X-*R a continuous map, then

to any tu t2ed(X) with t1<t2, there exists a connected component B

of d-}(]t1, t2[) such that 6(B)= ]tu t2[ . The proof is based on a theorem

of Wilder [7, p. 46, Theorem 3.8]. The assumption that X is Hausdorff

is however not used and can be removed.

Corollary 1. If X is locally connected, T:XxX^>-R is continuous in

each variable, f: X-^-R is locally bounded from above (or from below) at
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each point of X and h is any function on T(X, X) satisfying the functional

equation

(2) f(x)+f(y) = h(T(x,y))

for all x, y e X, then f must be continuous on X.

Proof. For a point a e X, if/is locally constant at a then/is con-

tinuous at a. We may suppose now/is not locally constant at a and hence

there exists an open connected neighbourhood Uoía such that/is bounded

and nonconstant on U. We can apply Theorem 1 to the equation

f(x)+f(y) = h(T(x,y))

for all je e U, y e X yielding the continuity of/on X.

Remark 2. Corollary 1 is proved by Pfanzagl [6] under stronger

assumptions on X—that X is locally compact and locally connected

Hausdorff.

Theorem 2. For equation (1), if each pair of points of X is contained in

some compact connected subset of X, T is jointly continuous on the product

space Xx Y and f is nonconstant and locally bounded from above on X

(or locally bounded from below on X), then g is continuous on Y.

Proof. Similar to the argument given in the first paragraph in the

proof of Theorem 1 we may suppose that X is compact and connected.

We note that/is then bounded from above on every subset of A'.

Let y0 e Y and e>0 be arbitrarily given.

Since/is nonconstant on X, for each y e Y the function T(-,y) is non-

constant on A"and T(X,y) is a proper closed interval of R. Write T(X,y0) =

[a,b] with a<b. Let A = {x e X:T(x,y0)=a}, B={x e X: T(x,y0)=b}

and C={x e X:a<T(x,y0)<b}. The sets A, B and C partitioned Xwith

A and B being closed in X and therefore compact. Since sup/(C)<oo

there exists x0e C such that f(x0)^.f(x) — e for all x e C.

We first let M: = {ye Y:a<T(x0,y)<b}.

Similar to the proof lines in Theorem 1, M is seen to be a neighbourhood

of j0 and g(y)^g(y0) + e for all yeM.

Secondly, we let N: = {ye Y:T(x,y)<T(x0,y0)<T(x',y) for all x e A,

x e B). We proceed to show that N is a neighbourhood of y0.

For each x e A we have T(x, y0)=a e ]— go, T(x0,y0)[. T is jointly

continuous and so there exist neighbourhoods U(x), Vx(y0) of x and y0

respectively such that T(U(x), Vx(y0))^ ]— co, T(x0,y0)[. Now, because A

is compact, there exists a finite subset Ä <^A such that U {U(x):x e y4'}2

A. The finite intersection V: = f) {Vx(y0):x e A'} is then a neighbour-

hood of y0 and  T(A, K)£ ]— co, T(x0,y0)[. Similarly, there exists a
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neighbourhood W of y0 such that T(B, W)z ]T(x0,y0), co[. Now

JV"2 VnW and is a neighbourhood ofy0.

For each yeN, T(X,y) is an interval of R. The fact that T(A,y)z

]-oo, r(x0> j0)[ and r(2f,»e ]T(x0,y0), oo[ implies T(x0, j0) e IXC».

Thus there exists xeC such that T(x0,y0)=T(x,y). It follows that

f(x0)+g(y0)=f(x)+g(y). Since f(x0)^f(x)-e we ha\e g(y0)-e^g(y).
MnN is then a neighbourhood of y0 and g(y0) — e^g(y)^g(y0) + s for

all y e MnN. This proves the continuity of g at j0.

Theorem 3. For equation (1), if X is connected, T is continuous in each

variable and f is nonconstant and bounded on X (from both sides), then g

is continuous on Y.

Proof.    Let y0 e Y and £>0 be arbitrarily given.

The nonconstancy of /in equation (1) implies that T(-,y0) is non-

constant. T(X, y0) is then a nondegenerated interval of R and there exist

tu t2eT(X,y0) with tt<t2. The set B={x £ X:T(x,y0) e]tu t2[} is

mapped by T(-,y0) onto ]t1, t2[. Since/is bounded from above on B

there exists x0e B such thatf(x0)^.f(x) — s for all x e B. If we set

M:={ycY:T(x0,y)e]t1,t2[}

we see that M is a neighbourhood of jv Furthermore for each y e M,

T(x0,y) e ]t1, t2[ =T(B,y0) and so there exists x e B such that T(x0,y)~

T(x,y0). It follows that f(x0)+g(y)=f(x)+g(y0). As f(x0)^f(x)-e

we haveg(j)5íg(y0)-l-c\

The above argument applies to the functions/=—/, g=—g, and

h=—h satisfying again equation (1). Hence there exists a neighbourhood

M of j0 such that|(»^|(y0)-r-efor all y e M, i.e. g(y0)-e^g(y).

On the neighbourhood MnMwe have g(y0) — £^g(y)'èg(yo) + e fc>r

every y e MnM. This proves the continuity of g.

3. Some examples. The connectedness of X is a common assumption

in Theorems 1, 2 and 3. Its essentiality can be seen from the following

example.

Example 1. We take A^={0, 1} the discrete space ^R, Y=R the reals

with the usual topology, T(x+y)=x+y, f.X—>-Y the natural inclusion

map, g=h:R—*R an additive function of the reals which is continuous at

no place and leaving the rationals fixed. Obviously equation (1) is satisfied,

X is locally connected and compact, T is jointly continuous and / is

bounded, nonconstant on X, while g is continuous at no place.

However, connectedness of X alone is not sufficient to give Theorems 1

and 2. This has been shown by C. Hipp who gave the following example.
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Example 2 (by C. Hipp). Let X= Y=R, Y endowed with the cannon-

ical topology ronü and Y endowed with the topology rx generated by r

and all subsets of R containing the rational numbers Q. Then (X, Tj) is

connected. Let <f> be a discontinuous (with respect to t) solution of the

Cauchy equation

(¡>(x) + <p(y) = <p{x + y)    for all x, y e R.

As for each x e X, <p is bounded on ({x}KJQ)n(x— 1, ;c+l) which is a t1

neighbourhood of x, we have the local boundedness of </> on (X, tj). The

map T with T(x,y)=x+y is jointly continuous on (X, t)x(Y, t) and

hence continuous on (X, Tj) x ( Y, t). However cf> is continuous on ( Y, t)

at no place.

The local connectedness of X for Corollary 1 is by no means redundant.

We illustrate this by the following example.

Example 3. We take X={n~1: n=l, 2, ■ ■ -}u{0} as a subspace of

R, T(x,y)=x+y^2 on XxX, f(x) = 0 if x^O and/(0)=l, h{n~l) =

h(n~1s/2)=l for all n=\, 2, ■ ■ ■ and A(«_1 + w~y2)=0 for all n, m=

1, 2, • • ■ and /z(0)=2. Obviously, equation (2) is satisfied, X fails to be

locally connected at 0, T is jointly continuous, / is bounded on X but

fails to be continuous at 0.

Some uniqueness theorems concerning the continuous solutions of

equations (1) and (2) are given in Ng [4] and Pfanzagl [5].
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