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LOCAL BOUNDEDNESS AND CONTINUITY FOR A
FUNCTIONAL 'EQUATION ON TOPOLOGICAL SPACES!

C. T. NG

ABSTRACT. It is known that the locally bounded solutions f of
Cauchy’s functional equation f(x)+f(y)=f(x+y) on the reals
are necessarily continuous. We shall extend this result to the func-
tional equation f (x)+g(y)=h(T(x, y)) on topological spaces.

1. Introduction. Let X, Y be topological spaces and let f: X—R (the
reals), g: Y—R, T: XX Y—R and h: T(X X Y)—R be functions satisfying
the functional equation

M S(x) + g(y) = K(T(x, y))

for all x € X, y € Y. We shall give some sufficient topological assumptions
on X and T so that the local boundedness and nonconstancy of f insure
that g is continuous. The method was suggested by the work of J. Pfanzagl
in his paper [6] generalizing a result of G. Darboux [2].

2. Main theorems.

THEOREM 1.  For equation (1), if each pair of points of X is contained in
the continuous image of some connected and locally connected space (for
instance, when X is connected and locally connected or when X is pathwise
connected), T is continuous in each of its two variables and f is nonconstant
and locally bounded from above (or from below) at each point of X, then g
is continuous on Y.

PROOF. Let a, b € X be such that f(a)5~f(b). There exist a connected
and locally connected space X and a continuous mapping y: ¥—X such
that a, b € y(X). The functions f:=fo y and T with T(%, y):=T(y(%), y)
for € X, y € Y, now satisfy the induced functional equation

) F&® + g = T, y)
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for all € X, y € Y. The local boundedness of f passes to f and the con-
tinuity of 7 in each variable passes to 7. With this observation there is no
loss of generality if we suppose from the very beginning that X is connected
and locally connected.

Since X is connected and f is nonconstant on X, f cannot be locally
constant on X and there exists a point e € X such that fis nonconstant on
every neighbourhood of e. As X is locally connected and f is locally
bounded from above at e there exists an open connected neighbourhood
U of e on which f is bounded from above. Thus f is nonconstant and
bounded from above on the connected and locally connected set U.

Let x,, x, € U be such that f(x,)#f(x,). It follows from equation (1)
that T(x,, y)#T(x,, y) forall ye Y.

Let y, € Y be arbitrarily given and we shall prove the continuity of g
at y,. We may suppose that f,:=T(x;, yo) <T(xz, yo)=:t;. By Lemma 1
in Pfanzag] [S] there exists a connected B< U such that T(B, y,)= 1t,, ta[ .
Let £>0 be arbitrarily given. Since sup f(B)<co, there exists x, € B
such that f(x,)= f(x)—e for all x € B.

Let M:={ye Y:t,<T(x,,y)<t;}. Then y,e M and, as T(x,,") is
continuous on Y, M is a neighbourhood of y,.

For each y € M, T(x,, y) € It;, t,[ =T(B, y,) and so there exists x € B
such that T(x,, y)=T(x, y,). Thus f (x,) +g(y)=h(T(x,, y))=h(T(x, y,))=
F(x)+g(yo)- As f(x0)= f(x)—e we have g(y) =g(yo)+e.

Let x3, x, € B be arbitrarily chosen such that t3:=T(x3, y,) < T(x,, o) <
T(xy, yo)= 1.

Let N:={ye Y:T(x3, ) <T(xy, yo)<T(x4,y)}. Then y, €N and, as
T(xs, *) and T(x,, *) are continuous on Y, N is a neighbourhood of y,.

For each ye N, T(B, y) is an interval of R as B is connected and
T(-, y) is continuous. Furthermore, T(x;, y) and T(x,, y) are points of
T(B,y) with T(x3, y)<T(xy, y)<T(x4,y) and so T(x,,y,) € T(B, y).
Hence there exists x € B such that T(x,, y,) = T(x, y). From this we have
S o) +8(r)=f (£)+8(3). As f (x)Z f(x)—e e have g(y))—e=g(y).

M NN is then a neighbourhood of y, and g(y,)—e=g(y)=g(y,)+e¢ for
every y € MNN. This proves the continuity of g at y,.

REMARK 1. Lemma 1 in Pfanzagl [5] is given as: let X be a connected
and locally connected Hausdorff space, 0: X—R a continuous map, then
to any ¢, t, € 6(X) with #,<t,, there exists a connected component B
of 0-1(]t,, t,[) such that 6(B)= ]t,, t,[ . The proof is based on a theorem
of Wilder [7, p. 46, Theorem 3.8]. The assumption that X is Hausdorff
is however not used and can be removed.

COROLLARY 1. [If X is locally connected, T:X X X—R is continuous in
each variable, f: X—R is locally bounded from above (or from below) at
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each point of X and h is any function on T(X, X) satisfying the functional
equation

(2 Jx) + f(y) = K(T(x, y))

for all x, y € X, then f must be continuous on X.

Proor. For a point a € X, if fis locally constant at a then f is con-
tinuous at . We may suppose now fis not locally constant at @ and hence
there exists an open connected neighbourhood U of a such that f'is bounded
and nonconstant on U. We can apply Theorem 1 to the equation

f(x) + f(y) = h(T(x,y))

for all x € U, y € X yielding the continuity of fon X.

REMARK 2. Corollary | is proved by Pfanzagl [6] under stronger
assumptions on X—that X is locally compact and locally connected
Hausdorff.

THEOREM 2.  For equation (1), if each pair of points of X is contained in
some compact connected subset of X, T is jointly continuous on the product
space XX Y and f is nonconstant and locally bounded from above on X
(or locally bounded from below on X), then g is continuous on Y.

PrOOF. Similar to the argument given in the first paragraph in the
proof of Theorem | we may suppose that X is compact and connected.
We note that fis then bounded from above on every subset of X.

Let y, € Y and ¢>0 be arbitrarily given.

Since f is nonconstant on X, for each y € Y the function 7Y(-, y) is non-
constant on X and 7(X, y) is a proper closed interval of R. Write T(X, y,)=
[a, b] with a<b. Let A={xe€ X:T(x, yo)=a}, B={x € X:T(x, y,)=>b}
and C={x € X:a<T(x, y,)<b}. The sets A, B and C partitioned X with
A and B being closed in X and therefore compact. Since sup f(C)< oo
there exists x, € C such that f(x,)= f(x)—¢ for all x € C.

We first let M:={y € Y:a<T(x,, y)<b}.

Similar to the proof lines in Theorem 1, M is seen to be a neighbourhood
of y, and g(y)=g(y,)+e¢ forall ye M.

Secondly, we let N:={y € Y: T(x, y) < T(x,, yo) <T(x', y) for all x € A4,
x' € B}. We proceed to show that N is a neighbourhood of y,.

For each x € A we have T(x, y,)=a € ]—o0, T(x,, yo)[. T is jointly
continuous and so there exist neighbourhoods U(x), V,(y,) of x and y,
respectively such that T(U(x), V,(y,))<S 1— o0, T(x,, yo)[ . Now, because A
is compact, there exists a finite subset A’ < A4 such that |J {U(x):x € 4'}2
A. The finite intersection V:=(") {V(y,):x € A’} is then a neighbour-
hood of y, and T(A, V)< ]—o0, T(x,, yo)[. Similarly, there exists a
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neighbourhood W of y, such that T(B, W)< [T(x,, y,), o[ . Now
N2VNW and is a neighbourhood of y,.

For each y e N, T(X, y) is an interval of R. The fact that T(4, y)=
]—CD, T(xo’ ,}’o)[ and T(B’ y)g ]T(xo,}’o), w[ lmplles T(xo, _}’o) € T(C9 }’)
Thus there exists x € C such that T(x,, yo)=T(x, y). It follows that
J(x0)+8(yo)=f(x)+g(y). Since f(x,) = f(x)—¢ we have g(y,)—e=g(y).

M NN is then a neighbourhood of y, and g(y,)—e=g(y)=g(y,)+¢ for
all y e MNN. This proves the continuity of g at y,.

THEOREM 3.  For equation (1), if X is connected, T is continuous in each
variable and f is nonconstant and bounded on X (from both sides), then g
is continuous on Y.

PROOF. Let y, € Y and £>0 be arbitrarily given.

The nonconstancy of f in equation (1) implies that T(:, y,) is non-
constant. T(X, y,) is then a nondegenerated interval of R and there exist
ty, t,€T(X,y,) with t,<t,. The set B={x€ X:T(x, y,) €1t;, t,[} is
mapped by T(:, y,) onto ]t;, t,[ . Since f is bounded from above on B
there exists x, € B such that f(x,)= f(x)—¢ for all x € B. If we set

M:={ye Y:T(xo,y) €]t5, t:[ }

we see that M is a neighbourhood of y,. Furthermore for each y € M,
T(x, y) € ]t1, t2[ =T(B, y,) and so there exists x € B such that T(x,, y)=
T(x,yo). It follows that f(xo)+8())=f(X)+g(yo). As f(xx)Zf(x)—e
we have g(y)=g(yo)+e. N

The above argument applies to the functions f=—f, §=—g, and
h= —h satisfying again equation (1). Hence there exists a neighbourhood
M of y, such that §(y)Sg(y,)+e for all y € M, i.e. g(yo)—e=g(y).

On the neighbourhood MNM we have g(y,)—e=g(y)=g(y,)+¢ for
every y € MNM. This proves the continuity of g.

3. Some examples. The connectedness of X is a common assumption
in Theorems 1, 2 and 3. Its essentiality can be seen from the following
example.

EXAMPLE 1. We take X={0, 1} the discrete space = R, Y=R the reals
with the usual topology, T(x+y)=x+y, f: X—Y the natural inclusion
map, g=h: R—R an additive function of the reals which is continuous at
no place and leaving the rationals fixed. Obviously equation (1) is satisfied,
X is locally connected and compact, T is jointly continuous and f is
bounded, nonconstant on X, while g is continuous at no place.

However, connectedness of X alone is not sufficient to give Theorems 1
and 2. This has been shown by C. Hipp who gave the following example.
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ExaMpLE 2 (BY C. Hipp). Let X=Y=R, Y endowed with the cannon-
ical topology = on R and X endowed with the topology , generated by =
and all subsets of R containing the rational numbers Q. Then (X, 7,) is
connected. Let ¢ be a discontinuous (with respect to r) solution of the
Cauchy equation

é(x) + ¢(») = (x + y) forallx,yeR.

As for each x € X, ¢ is bounded on ({x}UQ)N(x—1, x+1) whichis a 7,
neighbourhood of x, we have the local boundedness of ¢ on (X, 7). The
map T with T(x, y)=x+y is jointly continuous on (X, 7)x (Y, r) and
hence continuous on (X, 7,) X (Y, 7). However ¢ is continuous on (Y, 7)
at no place.

The local connectedness of X for Corollary 1 is by no means redundant.
We illustrate this by the following example.

ExaMpLE 3. We take X={n"1:n=1,2,---}U{0} as a subspace of
R, T(x,y)=x+y\/2 on XXX, f(x)=0 if x>0 and f(0)=1, h(n"Y)=
h(n=/2)=1 for all n=1,2,--- and h(n"'+m=1/2)=0 for all n, m=
1,2,- - and A(0)=2. Obviously, equation (2) is satisfied, X fails to be
locally connected at 0, T is jointly continuous, f is bounded on X but
fails to be continuous at 0.

Some uniqueness theorems concerning the continuous solutions of
equations (1) and (2) are given in Ng [4] and Pfanzagl [5].
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