LOCAL BOUNDEDNESS AND CONTINUITY FOR A FUNCTIONAL EQUATION ON TOPOLOGICAL SPACES¹

C. T. NG

ABSTRACT. It is known that the locally bounded solutions f of Cauchy's functional equation f(x)+f(y)=f(x+y) on the reals are necessarily continuous. We shall extend this result to the functional equation f(x)+g(y)=h(T(x,y)) on topological spaces.

1. Introduction. Let X, Y be topological spaces and let $f: X \rightarrow R$ (the reals), $g: Y \rightarrow R$, $T: X \times Y \rightarrow R$ and $h: T(X \times Y) \rightarrow R$ be functions satisfying the functional equation

$$(1) f(x) + g(y) = h(T(x, y))$$

for all $x \in X$, $y \in Y$. We shall give some sufficient topological assumptions on X and T so that the local boundedness and nonconstancy of f insure that g is continuous. The method was suggested by the work of J. Pfanzagl in his paper [6] generalizing a result of G. Darboux [2].

2. Main theorems.

Theorem 1. For equation (1), if each pair of points of X is contained in the continuous image of some connected and locally connected space (for instance, when X is connected and locally connected or when X is pathwise connected), T is continuous in each of its two variables and f is nonconstant and locally bounded from above (or from below) at each point of X, then g is continuous on Y.

PROOF. Let $a, b \in X$ be such that $f(a) \neq f(b)$. There exist a connected and locally connected space \widetilde{X} and a continuous mapping $\gamma: \widetilde{X} \to X$ such that $a, b \in \gamma(\widetilde{X})$. The functions $\widetilde{f}:=f \circ \gamma$ and \widetilde{T} with $\widetilde{T}(\widetilde{x}, y):=T(\gamma(\widetilde{x}), y)$ for $\widetilde{x} \in \widetilde{X}$, $y \in Y$, now satisfy the induced functional equation

$$\tilde{f}(\tilde{x}) + g(y) = h(\tilde{T}(\tilde{x}, y))$$

Received by the editors October 27, 1972.

AMS (MOS) subject classifications (1970). Primary 39A15, 39A20, 39A40; Secondary 54C30, 54D05.

Key words and phrases. Functional equations, local boundedness, connected, locally connected, continuous.

¹ Research supported under Canadian NRC Grant A8212.

for all $\tilde{x} \in \tilde{X}$, $y \in Y$. The local boundedness of f passes to \tilde{f} and the continuity of T in each variable passes to \tilde{T} . With this observation there is no loss of generality if we suppose from the very beginning that X is connected and locally connected.

Since X is connected and f is nonconstant on X, f cannot be locally constant on X and there exists a point $e \in X$ such that f is nonconstant on every neighbourhood of e. As X is locally connected and f is locally bounded from above at e there exists an open connected neighbourhood U of e on which f is bounded from above. Thus f is nonconstant and bounded from above on the connected and locally connected set U.

Let $x_1, x_2 \in U$ be such that $f(x_1) \neq f(x_2)$. It follows from equation (1) that $T(x_1, y) \neq T(x_2, y)$ for all $y \in Y$.

Let $y_0 \in Y$ be arbitrarily given and we shall prove the continuity of g at y_0 . We may suppose that $t_1 := T(x_1, y_0) < T(x_2, y_0) = :t_2$. By Lemma 1 in Pfanzagl [5] there exists a connected $B \subseteq U$ such that $T(B, y_0) =]t_1, t_2[$. Let $\varepsilon > 0$ be arbitrarily given. Since $\sup f(B) < \infty$, there exists $x_0 \in B$ such that $f(x_0) \ge f(x) - \varepsilon$ for all $x \in B$.

Let $M := \{y \in Y : t_1 < T(x_0, y) < t_2\}$. Then $y_0 \in M$ and, as $T(x_0, \cdot)$ is continuous on Y, M is a neighbourhood of y_0 .

For each $y \in M$, $T(x_0, y) \in]t_1$, $t_2[=T(B, y_0)$ and so there exists $x \in B$ such that $T(x_0, y) = T(x, y_0)$. Thus $f(x_0) + g(y) = h(T(x_0, y)) = h(T(x, y_0)) = f(x) + g(y_0)$. As $f(x_0) \ge f(x) - \varepsilon$ we have $g(y) \le g(y_0) + \varepsilon$.

Let $x_3, x_4 \in B$ be arbitrarily chosen such that $t_3 := T(x_3, y_0) < T(x_0, y_0) < T(x_4, y_0) = :t_4$.

Let $N := \{y \in Y : T(x_3, y) < T(x_0, y_0) < T(x_4, y)\}$. Then $y_0 \in N$ and, as $T(x_3, \cdot)$ and $T(x_4, \cdot)$ are continuous on Y, N is a neighbourhood of y_0 .

For each $y \in N$, T(B, y) is an interval of R as B is connected and $T(\cdot, y)$ is continuous. Furthermore, $T(x_3, y)$ and $T(x_4, y)$ are points of T(B, y) with $T(x_3, y) < T(x_0, y_0) < T(x_4, y)$ and so $T(x_0, y_0) \in T(B, y)$. Hence there exists $x \in B$ such that $T(x_0, y_0) = T(x, y)$. From this we have $f(x_0) + g(y_0) = f(x) + g(y)$. As $f(x_0) \ge f(x) - \varepsilon$ we have $g(y_0) - \varepsilon \le g(y)$.

 $M \cap N$ is then a neighbourhood of y_0 and $g(y_0) - \varepsilon \leq g(y) \leq g(y_0) + \varepsilon$ for every $y \in M \cap N$. This proves the continuity of g at y_0 .

REMARK 1. Lemma 1 in Pfanzagl [5] is given as: let X be a connected and locally connected Hausdorff space, $\theta: X \to R$ a continuous map, then to any t_1 , $t_2 \in \theta(X)$ with $t_1 < t_2$, there exists a connected component B of $\theta^{-1}(]t_1, t_2[]$ such that $\theta(B) =]t_1, t_2[]$. The proof is based on a theorem of Wilder [7, p. 46, Theorem 3.8]. The assumption that X is Hausdorff is however not used and can be removed.

COROLLARY 1. If X is locally connected, $T: X \times X \rightarrow R$ is continuous in each variable, $f: X \rightarrow R$ is locally bounded from above (or from below) at

each point of X and h is any function on T(X, X) satisfying the functional equation

$$(2) f(x) + f(y) = h(T(x, y))$$

for all $x, y \in X$, then f must be continuous on X.

PROOF. For a point $a \in X$, if f is locally constant at a then f is continuous at a. We may suppose now f is not locally constant at a and hence there exists an open connected neighbourhood U of a such that f is bounded and nonconstant on U. We can apply Theorem 1 to the equation

$$f(x) + f(y) = h(T(x, y))$$

for all $x \in U$, $y \in X$ yielding the continuity of f on X.

REMARK 2. Corollary 1 is proved by Pfanzagl [6] under stronger assumptions on X—that X is locally compact and locally connected Hausdorff.

THEOREM 2. For equation (1), if each pair of points of X is contained in some compact connected subset of X, T is jointly continuous on the product space $X \times Y$ and f is nonconstant and locally bounded from above on X (or locally bounded from below on X), then g is continuous on Y.

PROOF. Similar to the argument given in the first paragraph in the proof of Theorem 1 we may suppose that X is compact and connected. We note that f is then bounded from above on every subset of X.

Let $y_0 \in Y$ and $\varepsilon > 0$ be arbitrarily given.

Since f is nonconstant on X, for each $y \in Y$ the function $T(\cdot, y)$ is nonconstant on X and T(X, y) is a proper closed interval of R. Write $T(X, y_0) = [a, b]$ with a < b. Let $A = \{x \in X : T(x, y_0) = a\}$, $B = \{x \in X : T(x, y_0) = b\}$ and $C = \{x \in X : a < T(x, y_0) < b\}$. The sets A, B and C partitioned X with A and B being closed in X and therefore compact. Since sup $f(C) < \infty$ there exists $x_0 \in C$ such that $f(x_0) \ge f(x) - \varepsilon$ for all $x \in C$.

We first let $M := \{ y \in Y : a < T(x_0, y) < b \}.$

Similar to the proof lines in Theorem 1, M is seen to be a neighbourhood of y_0 and $g(y) \le g(y_0) + \varepsilon$ for all $y \in M$.

Secondly, we let $N := \{ y \in Y : T(x, y) < T(x_0, y_0) < T(x', y) \text{ for all } x \in A, x' \in B \}$. We proceed to show that N is a neighbourhood of y_0 .

For each $x \in A$ we have $T(x, y_0) = a \in]-\infty$, $T(x_0, y_0)[$. T is jointly continuous and so there exist neighbourhoods U(x), $V_x(y_0)$ of x and y_0 respectively such that $T(U(x), V_x(y_0)) \subseteq]-\infty$, $T(x_0, y_0)[$. Now, because A is compact, there exists a finite subset $A' \subseteq A$ such that $\bigcup \{U(x): x \in A'\} \supseteq A$. The finite intersection $V:=\bigcap \{V_x(y_0): x \in A'\}$ is then a neighbourhood of y_0 and $T(A, V) \subseteq]-\infty$, $T(x_0, y_0)[$. Similarly, there exists a

neighbourhood W of y_0 such that $T(B, W) \subseteq]T(x_0, y_0), \infty[$. Now $N \supseteq V \cap W$ and is a neighbourhood of y_0 .

For each $y \in N$, T(X, y) is an interval of R. The fact that $T(A, y) \subseteq]-\infty$, $T(x_0, y_0)[$ and $T(B, y) \subseteq]T(x_0, y_0)$, $\infty[$ implies $T(x_0, y_0) \in T(C, y)$. Thus there exists $x \in C$ such that $T(x_0, y_0) = T(x, y)$. It follows that $f(x_0) + g(y_0) = f(x) + g(y)$. Since $f(x_0) \ge f(x) - \varepsilon$ we have $g(y_0) - \varepsilon \le g(y)$.

 $M \cap N$ is then a neighbourhood of y_0 and $g(y_0) - \varepsilon \leq g(y) \leq g(y_0) + \varepsilon$ for all $y \in M \cap N$. This proves the continuity of g at y_0 .

THEOREM 3. For equation (1), if X is connected, T is continuous in each variable and f is nonconstant and bounded on X (from both sides), then g is continuous on Y.

PROOF. Let $y_0 \in Y$ and $\varepsilon > 0$ be arbitrarily given.

The nonconstancy of f in equation (1) implies that $T(\cdot, y_0)$ is nonconstant. $T(X, y_0)$ is then a nondegenerated interval of R and there exist t_1 , $t_2 \in T(X, y_0)$ with $t_1 < t_2$. The set $B = \{x \in X : T(x, y_0) \in]t_1, t_2[$ is mapped by $T(\cdot, y_0)$ onto $]t_1, t_2[$. Since f is bounded from above on B there exists $x_0 \in B$ such that $f(x_0) \ge f(x) - \varepsilon$ for all $x \in B$. If we set

$$M := \{ y \in Y : T(x_0, y) \in]t_1, t_2[\}$$

we see that M is a neighbourhood of y_0 . Furthermore for each $y \in M$, $T(x_0, y) \in]t_1, t_2[=T(B, y_0)$ and so there exists $x \in B$ such that $T(x_0, y) = T(x, y_0)$. It follows that $f(x_0) + g(y) = f(x) + g(y_0)$. As $f(x_0) \ge f(x) - \varepsilon$ we have $g(y) \le g(y_0) + \varepsilon$.

The above argument applies to the functions $\tilde{f} = -f$, $\tilde{g} = -g$, and $\tilde{h} = -h$ satisfying again equation (1). Hence there exists a neighbourhood \tilde{M} of v_0 such that $\tilde{g}(v) \le \tilde{g}(v_0) + \varepsilon$ for all $v \in \tilde{M}$, i.e. $g(v_0) - \varepsilon \le g(v)$.

On the neighbourhood $M \cap \widetilde{M}$ we have $g(y_0) - \varepsilon \leq g(y) \leq g(y_0) + \varepsilon$ for every $y \in M \cap \widetilde{M}$. This proves the continuity of g.

3. Some examples. The connectedness of X is a common assumption in Theorems 1, 2 and 3. Its essentiality can be seen from the following example.

EXAMPLE 1. We take $X = \{0, 1\}$ the discrete space $\subseteq R$, Y = R the reals with the usual topology, T(x+y) = x+y, $f: X \to Y$ the natural inclusion map, $g = h: R \to R$ an additive function of the reals which is continuous at no place and leaving the rationals fixed. Obviously equation (1) is satisfied, X is locally connected and compact, T is jointly continuous and f is bounded, nonconstant on X, while g is continuous at no place.

However, connectedness of X alone is not sufficient to give Theorems 1 and 2. This has been shown by C. Hipp who gave the following example.

EXAMPLE 2 (BY C. HIPP). Let X=Y=R, Y endowed with the cannonical topology τ on R and X endowed with the topology τ_1 generated by τ and all subsets of R containing the rational numbers Q. Then (X, τ_1) is connected. Let ϕ be a discontinuous (with respect to τ) solution of the Cauchy equation

$$\phi(x) + \phi(y) = \phi(x + y)$$
 for all $x, y \in R$.

As for each $x \in X$, ϕ is bounded on $(\{x\} \cup Q) \cap (x-1, x+1)$ which is a τ_1 neighbourhood of x, we have the local boundedness of ϕ on (X, τ_1) . The map T with T(x, y) = x + y is jointly continuous on $(X, \tau) \times (Y, \tau)$ and hence continuous on $(X, \tau_1) \times (Y, \tau)$. However ϕ is continuous on (Y, τ) at no place.

The local connectedness of X for Corollary 1 is by no means redundant. We illustrate this by the following example.

EXAMPLE 3. We take $X=\{n^{-1}: n=1, 2, \dots\} \cup \{0\}$ as a subspace of R, $T(x,y)=x+y\sqrt{2}$ on $X\times X$, f(x)=0 if $x\neq 0$ and f(0)=1, $h(n^{-1})=h(n^{-1}\sqrt{2})=1$ for all $n=1, 2, \dots$ and $h(n^{-1}+m^{-1}\sqrt{2})=0$ for all $n, m=1, 2, \dots$ and h(0)=2. Obviously, equation (2) is satisfied, X fails to be locally connected at 0, T is jointly continuous, f is bounded on X but fails to be continuous at 0.

Some uniqueness theorems concerning the continuous solutions of equations (1) and (2) are given in Ng [4] and Pfanzagl [5].

REFERENCES

- 1. J. Aczél, Lectures on functional equations and their applications, Math. in Sci. and Engineering, vol. 19, Academic Press, New York, 1966. MR 34 #8020.
- 2. G. Darboux, Sur la théorème fondamental de la géométrie projective, Math. Ann. 17 (1880), 55-61.
- 3. J. L. Denny, Cauchy's equation and sufficient statistics on arcwise connected spaces, Ann. Math. Statist. 41 (1970), 401-411. MR 41 #6346.
- **4.** C. T. Ng, On the functional equation $f(x) + \sum_{i=1}^{n} g_i(y_i) = h(T(x, y_1, y_2, \dots, y_n))$, Ann. Polon. Math. **27** (to appear).
- 5. J. Pfanzagl, On a functional equation related to families of exponential probability measures, Aequationes Math. 4 (1970), 139-142; Aequationes Math. 6 (1970), 120. MR 42 #6972; MR 44 #4426.
- 6. —, On the functional equation $\varphi(x) + \varphi(y) = \psi(T(x, y))$, Aequationes Math. 6 (1970), 202–205.
- 7. R. L. Wilder, *Topology of manifolds*, Amer. Math. Soc. Colloq. Publ., vol. 32, Amer. Math. Soc., Providence, R.I., 1949. MR 10, 614.

DEPARTMENT OF APPLIED ANALYSIS AND COMPUTER SCIENCE, FACULTY OF MATHEMATICS, UNIVERSITY OF WATERLOO, WATERLOO, ONTARIO, CANADA