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GENERALIZED  STEENROD-HOPF INVARIANTS
FOR  STABLE HOMOTOPY  THEORY

WARREN m. krueger

Abstract. In his paper On the groups J(X). IV, Adams sug-

gested that one might try to continue his d and e invariants to a

sequence of higher homotopy invariants, each defined upon the

vanishing of its predecessors and each taking its value in a certain

Ext group. Recently he pointed out the efficacy of relocating his d

and e invariants in Ext groups formed over a certain abelian

category of comodules. It is the purpose of this note to carry out

the program suggested above in a setting of the sort just mentioned.

More specifically, for each homology theory which is representable

by a comutative ring spectrum and whose ring of cooperations is

flat over the coefficient ring, a sequence of higher homotopy

invariants is constructed whose first term is Adams' e invariant for

this theory.

1. Notation and statement of results. In this section some notation is

fixed and the main results of this note are given. Their proofs are deferred

until §3.

All spectra and maps considered here are assumed to reside in Board-

man's stable category.

From now on, E shall denote a commutative ring spectrum with unit

i:S°^E. It shall be further assumed that E*(E) is flat as a left E*(S°)

module. Then E*(E) is a Hopf algebra over which E#(X) is a left comodule

for any spectrum X. All Horn and Ext groups found here are formed

relative to the abelian category of left E*(E) comodules.

Let/: X-+ Tbe a map whose domain satisfies the isomorphism condition :

for any spectrum W, the correspondence

[X, E a W% — Hom*.(s,(£„(X), E¿E A W)),

given by [g]—>g%, is an isomorphism. This condition obtains, for example,

if X satisfies the hypotheses of Proposition 17 of [2].

Received by the editors November 27, 1972.

AMS (MOS) subject classifications (1970). Primary 55E25; Secondary 55E45, 55G20.
Key words and phrases. Stable homotopy theory, spectrum, coalgebra, comodule,

homology operation, exact couple, canonical injective resolution, extended comodule,

unitary spectrum.
© American Mathematical Society 1973

609



610 W.   M.   KRUEGER [August

For stable maps /: X-> Y of the sort just described for which also

fíf:Eíf(X)-+E(Y) is zero, higher order functional homology operations

are constructed after the manner of Peterson from exact couples owing

to Adams. These operations evaluated on a certain fundamental class

yield subsets

/B(/)cExt-"(£>(E*W,E*(Y)),

which are invariants of the homotopy class of/. The set In(f), defined

when lk(f) = 0 for k<n, is called the nth generalized Steenrod-Hopf

invariant off with respect to E.

The values of Ix and I2 are given in terms of more familiar operations

in the next two propositions. In particular, the first of these identifies

Ix as Adams' e invariant up to sign.

Proposition 1. When Ix(f) is defined, Ix(f)=—e(f), where e(f) is

Adams' e invariant of [1, p. 27].

The second proposition might be considered, from a heuristic point

of view, as a consequence of Peterson's composition theorem [5, p. 208].

Proposition 2 is proved, however, without reference to Peterson's theorem,

as his proof of that result does not apply in this setting.

Proposition 2.    Suppose f=h ° g and Ix(g) and Ix(h) are defined. Then

(a) I2(f) is defined; and

(b) -(Ix(h)-Ix(g))el2(f),
where "•" denotes composition in Ext.

The next proposition specifies the differential in the Adams exact

couple by a formula which is useful in the calculation of the invariants /„.

Its precise statement, being somewhat technical, is given in Proposition 3

of the next section.

Finally the above results are illustrated in some computations involving

complex /C-homology. While more comprehensive computations are

possible by the same methods, the ones given here serve to typify the

basic ingredients of the methods in a clear way. A summary of these

computations is given in

Proposition 4.    Let K be the unitary spectrum.

(a) Ext1±\{K)(K^(S°), K#(S0)) is isomorphic to Z2 with generator Ix(r¡),

where r¡ e [S°, S°]x is the class of the stable Hopf map.

(b) I2(if) is defined and nonzero in Ext2¿\lK).

2. The Adams exact couple and homotopy invariants. First a bit of

notation: If/:X->-y is a map, then its associated mapping triangle is
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where C(f) is the mapping cone and P(f) and Q(f) are the obvious maps.

The Adams exact couple is obtained from the filtration construction

of [2, p. 54]. For later convenience, this construction is recounted here

in slightly different form than in [2]. Let C(i) be the mapping cone of

i:S°—*-E and, for any spectrum W, let Wk denote the &-fold smash of W

with itself. For any spectrum Y, define Yk to be (C(i))kA Y, Zk to be

Eh Yk, ik to be /'A Yk,jk to be P(f')A Yk and pk to be Q(i)A Yk. The resulting

diagram

is called the Adams filtration for Y.

Applications of the functor [X, _]* to A(Y) yields an exact couple

sé(X, Y) in which AsA=[X, Y,]t, CsA=[X,Zs]t and the maps f.A-^A,

g : C-yA and h : A-^-C of bidegrees ( — 1, — 1 ), (0, 0) and (1,0) are induced

by ps, is, andy"s respectively. This couple is called the Adams exact couple

of X and Y. In the event that X satisfies the isomorphism condition,

sé(X, Y) has the £2-term of its associated spectral sequence isomorphic to

Ext**(B)(E¿X), E*(Y)).

In addition, if X=S°, the differential  of sé(S°, Y) satisfies a useful

formula which is recorded in

Proposition 3. 77ze differential dí^-.w^Z^Tr^Z^) satisfies the

formula

v-1 dsi* = (jo* ® l)(c ® l)y>Fs,

where v is the external product for A* homology, y'„: A—>-C(í), c  is the

canonical anti-automorphism for E%(E) and

Vys- E*(Ys) -*■ E*(E) ®Et (So) A*( Ys)

is the coaction map.
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The generalized Steenrod-Hopf invariants, which can be introduced

now, are functional homology operations evaluated on a certain funda-

mental class. These operations arise by the method of Peterson [5, §5]

applied to Adams' exact couples.

Specifically, let/: Z—>-Y be a map whose domain satisfies the isomor-

phism condition and for which fifE^(X)^>-E3t(Y) is zero. In §5 of [4], let

(A', C), (A, C) and (A", C") be the couples si(X, Y), si(X, C(f)) and

si(X, X) respectively and / and j be the maps of bidegree (0, 0) and

(0, — 1) induced by P(f) and Q(f) respectively. Further, take t e [X, EaX]0

to be the class of i0 in A(X). Then dk{t} = {iktf-^k-%^(i)}=0 for all k.

Now if &x{i}=0, ■ ■ • , A„_1{¿}=0, then AB{(} is defined. This class is

called the nth generalized Steenrod-Hopf invariant off with respect to E

and is denoted by /„(/). From its definition, it is easy to see that this class

is both an invariant off up to homotopy and a subset of

Ext^(E)(F*W,F*(7)).

As an example, if E=H(Z2), the Eilenberg-Mac Lane spectrum for Z2,

and/is an element of a stem, then Ix(f) is the stable mod 2 Hopf in-

variant off.
It shall be useful later to note that Adams' e invariant can be formulated

in terms of sé(X, Y) provided X satisfies the isomorphism condition.

Since/*=0, ;0 °/~0; so there is a mapf.X~+Yx of degree +1 for which

f~p0 °f. The homomorphism

(ix/)«, 6 Hornos, (£*(*), E¿ZJ)
determines a class

e'(f)eExt£(E)(E*(X),E*(Y))

which clearly depends upon only the homotopy class of / The class e'(f)

corresponds to Adams' invariant e(f) under the isomorphism which

identifies the Ext1 group defined from resolutions with the Ext1 group

defined by the classification of short exact sequences.

3. Proofs. The proofs of Propositions 1 through 4 are given in this

section.

The proofs of the first two propositions use a certain geometric fact

which is presumably well known but does not seem to be written down

anywhere. It is given here without proof as

Proposition 5. Suppose given two factorizations of a null-homotopic map,

i.e., hxgx=h2g2—0: rV—*Y. Then there exist maps ge: IF—>-C(«E) of degree

+1, s = 1, 2, such that

(i) QUh)gi^-gi and Q(h2)g2~g2;
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(ii) the maps i1g1 and i2g2 are homotopic, where ie: C(/7£)—*-C(/jiV/í2) is the

inclusion, for £=1,2.

The idea in the proof of 1 and 2 is to advantageously use the choices

permissible in the definitions of /, and I2 to produce a suitable repre-

sentative of each.

Proof of Proposition 1.   By definition,

I,(f) = {(£ A C(i) A P(f))-1 d,(E A Q(f))?(,.)},

where <4='i*/o* in tne couple sé(X, C(f)). The map (/A Y)f= (EAf)(iAX)
is null-homotopic, since /*=0. By Proposition 5, there are classes le

[X, EAC(f)]1 and [/] e [X, C(i)AY], so that (£Aß(/)),(I)=t, />„[/] =
-[/] and (C(0AP(/))+([/])=y0*(t). Thus on one hand, h*([f]) repre-

sents /i(/) and, on the other hand, it represents —e'(f). As e'(f)=e(f),

the proof is complete.

Proof of Proposition 2.   According to its definition

I2(hg) = {[E A (C(i)2 A P(hg)]-1 d2(E A Q(hg))t(t)},

where i/2 = /2*/»r*Vo* ¡n the couple sé(X, C(hg)). By the methods of the

preceding proof, there are classes t g [X, EACig)^ and [g] e [X,C(i)A W\x

so that (EAQ(g)\Ç,) = i g [X, EAX]0, p0*([g])= - [g] and

(C(i) A P(g)U[g]) = j0*([i]).

There is also a map h:C(g)->-C(hg) for which Q(hg)h = Q(g). Then

oc=(£a/0*(7)g [jf, AAC(/¡g)]! and (£,A(3(^))*(a) = t. Further y'0*(a) =

(C(OAP(A^))»([(C(i)AA)|]).
Now let £: W^C(i)A Y be such that/>„*([/?])= [A]. Then i'2*([(C(/)A%])

represents — /,(/¡) • /i(g). Further /J1*([(C(/)AA)ig])=[Àig]. As both

[(C(/)A/i)g] and [hg] project to [hg] under p0*, there is a class ß e

[X,EAY\ so that M(ß)=[h~g]-l(Cmh)g]. Now x+(EAPßg)Uß)
projects to t under (EAQ(hg))* and projects to [(C(i)AP(hg))hg] under

y0*. This implies that i2*([(C(i)Ah)g]) e I2(hg) and the proof is complete.

In Proposition 3, the formula satisfied by the Adams differential is a

consequence of a more general algebraic result. The algebraic setting

for this result is as follows.

Let Ä' be a commutative ring with unit, A a AT-bimodule which is an

augumented Hopf algebra with canonical anti-automorphism c and A a

left A'-module which is a left A comodule with structure map yA:A-^-

A ®K A. Further, let %pA: A-^-X be the canonical injective resolution of

A (for definition and notation see p. 208 of [4]) and let A'1 be

cokerfr^A'-s-A}, where r¡L is the left unit of A. Note that A'1 is a left
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A-module. Now suppose given for each p, an isomorphism

Vp-.K1 ®KAP-+AP+1

so that

X" = A ®K A*    C@1   > A ®K A»

lPi l1®1

Av+i <-!»-Ki 0K Av

commutes, where y: A—»A'is the quotient and "®" is used to indicate that

the tensor product is formed using the left action of K on A, instead of

the usual right action. Of course, Kx ®K Av is the tensor product of left

A-modules.

Proposition 6. The complex {HomA (K, Xp), HomA(K, d")} is chain

isomorphic to the complex {Av, dP} in which the differential dp is given by the

formula

v*1 dv = (/ ® V)(c ® 1) w

Proof.    From the properties of extended comodules,

Ap ~ HomA.(A, Av) ~ HomA(A, A ®K A*) = HomA(A", X').

To complete the proof, it suffices to show that the composite

d'v: Ap ~ HomA(A, X") -*■ HomA(A, Xp+1) ~ Ap+1

satisfies the formula giving dr. From its definition d'í)(a) = lp(r¡L(l)c¡>a),

a e Ap. As lp annihilates im \pAv,

d'v(a) = l"(r¡L(l) ® a + rpA»(a)).

Now

v-1 d'p(a) = v-Hv(ndX) ® a + tpAr(a))

= (/ ® l)(c ® l)(r¡L(l) ® a + fA*(a))

= (jcyL(l) ® a) + (j ® l)(c ® l)y>A>(a)

= (j ® l)(c ® \)ipy(a),       a e Ap.

Proof of Proposition 3. Relative to the above algebra, set A=F* (5°),

A = F„.(F), A1 = F*(C(/)), i'j,=the external homology product for E^

(see [2, p. 58]) and A = E*(Y). Since ip*=mipY :E*(YJ))—>-E*(EAYI))

and lp=jp*m:E*(E) ®B((So, £'»(FJ,)->-£»(yjH.1), the resolution

0-£«,(y)-E„(Zo)----

obtained from ^4(Y) is nothing but the canonical injective resolution of

E*(Y), where the isomorphism m:E*(E) ®e,(s») E^Y^-^E^EaY p) is the
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product defined in [2, p. 58]. The proposition now follows from Proposi-

tion 6, since the correspondence Tr^(Z31)^-HomE^(E)(E^(S0), E*(ZP)),

given by t/Ji-»/*, is a chain isomorphism.

Proof of Proposition 4. (a) The group Ext)t\{K)(K*(S0), K*(S0)) is

isomorphic to ker ¿},2/im ¿?'2. By Proposition 3 and Theorem (2.3) of [3],

ker dl'2 = {r(v — u)\r is a suitable rational}. The integrality condition (2.4)

of [3] requires that r = |(mod 1). On the other hand im ú?1a = {«(y—u)\neZ}.

Thus Extl¿\(K) is isomorphic to the subgroup of order 2 of coker d\'2

generated by i(v—u).

To show that I^rf) assumes the value i(v—u), one simply applies the

definition of /,. The mapping cone of r¡ is ~L-2CP2 in the stable category.

Let t g K2(2r2CP2) be the obvious element which projects to i e KX(SX)

and t0 g K0(Z-2CP2) be the image under S°~+T,-2CP2 of the obvious

element of K0(S°). Then v_1d1(7) = (y0*(g>l)(c®l)y2-2ep2(0 = (/o*®l)><

(c®l)(a<8>to+l®<)=./u*c(ÍI)®ín> where aeK2(K). It is not hard to show

that a is represented by t2ß2 e Kt(BU) with BU regarded as the second

term, K2, of the spectrum K. When BU is taken to be K0, t2ß2 projects to

p'2=\v(v—u) by (6.13) of [3], so when BU is taken to be A"2, t2ß2 projects

to |(i>—u) according to (6.1) of [3]. Thus Ii(r¡)=j0*c(?(v — u))=%(u—v) =

i(v-u) in ExtkV>(**(S°), K*(S°)).
(b) For dimensional reasons, the indeterminacy of I2(r¡2) is zero, so

that by Proposition 2, I2(r¡2) is the singleton {—I^rj) ■ I^rf)}. That this

class is nonzero in Ext2 can be shown by calculating with d\A and d\A

and the integrality condition (2.4) of [3].
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