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A NON-HAUSDORFF ASCOLI THEOREM FOR  Ä;3-SPACES

GEOFFREY FOX AND  PEDRO MORALES

Abstract. The paper establishes an Ascoli theorem in the space

of continuous functions on a fc3-space to a regular space. The

theorem, in terms of even continuity and the compact open

topology tc, properly contains the Ascoli theorems of Myers, Gale,

Kelley-Morse, Bagley-Yang, and the &3-space theorem of Noble.

1. Introduction. To date, there are, apparently, five important fc-space

Ascoli theorems. There is the more general theorem 4.2(i) of Noble

[8, p. 403], containing his &3-space Corollary 4.4. All of these theorems

suppose the range space to be regular and Hausdorff, and the Hausdorff

condition is essential in the direction of necessity. Our theorem assumes

only regularity on the range space. As might be expected, the generaliza-

tion of context requires, in the direction of necessity, a strict weakening

of one of the usual Ascoli conditions. However, these weakened conditions

turn out to be sufficient.

The basic instruments of the paper are an even continuity lemma for

partial functions, and a separating equivalence relation for regular spaces.

The terminology and facts used without specific reference are of Kelley [6].

2. A:3-spaces. Let X=(X, t) be a topological space. The k-extension

of t is the family k(r) of all subsets U of X such that UCiK is open in K

for every compact subset K of X. It is clear that k(r) is a topology on X

which is larger than t. A topological space (X, t) is called a k-space if

T=k(r) [3, p. 79]. Locally compact spaces and spaces satisfying the first

countability axiom are familiar examples of A>spaces.

Let X, Y be topological spaces. A function/: X—*■ Y is called k-continuous

if its restriction to each compact subset of X is continuous [2, p. 245].

Henceforth, the family of ^-continuous functions on X to Y will be de-

noted Ck(X, Y) and the subfamily of continuous functions on A'to Twill be

denoted C(X, Y). It is known that a topological space X is a fc-space if and

only if Ck(X, Y) = C(X, Y), for every topological space Y. A topological

space Xis called a k3-space if Ck(X, Y) = C(X, Y) for every regular space
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Y [9, p. 195]. Thus, a Ac-space is a k3-space, but not conversely, because

the product of uncountably many copies of the real line, which is not a

¿-space, is a rc3-space [9, Theorem 5.6(i)].

Let X, Y and Z be nonempty sets. The symbol w will denote the evalua-

tion map (/, x)->f(x) on Yx X X to Y, or any restriction of this map. An

element/of ZXxY determines the function f;x-*f(x, ■) on X toZY. It is

clear that the exponential map pi:f—*fis a bijection of ZXxT onto (ZT)X.

The following lemma is contained implicitly in the proof of Theorem

1.2 in [8, p. 394]:

2.1 Lemma. Let fe C(XxY,Z). If X is compact and Z is regular, then

the family {f(x, -):x e X) is evenly continuous.

Let X, Y and Z be topological spaces. The symbol Sk(Xx Y, Z) denotes

the family of all functions feZXxr such that, for each x e X and each

compact subset A of Y, the restrictions/I {x} x Y,f\Xx K are continuous.

2.2 Theorem. Let X be a k3-space and let Y be a regular space. Then

every compact subset F of (C(X, Y), tc) is evenly continuous.

Proof. Since Fis regular, p-1(C(F, (C(X, Y),Tc)))çSk(FxX, Y)

[8, Theorem 3.1]. Further, since F is compact and lis a Ac3-space,

Sk(FxX,Y) = C(FxX,Y) [8, Theorem 3.4]. Let w.FxX^Y. Since

p(m):F-^-(C(X,Y),Tc) is the inclusion map, it is continuous. Then co

is continuous, and therefore, by 2.1, Fis evenly continuous.

3. A separating equivalence relation. Let I be a topological space

which is Hausdorff or regular. Consider the following equivalence relation

on X (reducing to equality when Xis Hausdorff): x R y means that every

open set containing x contains y. For a subset E of X, E* will denote the

smallest A-saturated subset of ^containing E (R-saturation of E). We will

apply the following facts :

(1) Every closed set is A-saturated.

(2) If x e E* there exists y e E such that x Ry. In fact, if x R y implies

y $ E, then X— {y.x Ry} is an A-saturated set containing F* but not x.

(3) If E^A, B^E* and A. is compact, then B is compact. In fact, an

open covering of B is an open covering of A. It contains a finite subfamily

covering A, which also covers B.

(4) If a net in Xconverges to points x, y e X, then x Ry.

(5) If A is compact, then A* is closed. In fact, if x e (K*)~ there is a

net N in A* converging to x. Since A* is compact, there is a subnet Nx of

TV converging to a point y e K*. Then x Ry, so x e K*.



1973] A  NON-HAUSDORFF  ASCOLI   THEOREM  FOR  A3-SPACES 635

4. Ascoli theorem.

4.1 Theorem. Let F^(C(X, Y),tc). If Y is regular, the following

conditions are sufficient for the compactness of F:

(a) F* is closed in C(X, Y),

(b) (F(x))~ is compact for all x e X, and

(c) F is evenly continuous.

If, further, X is a k3-space, the conditions (a), (b) and (c) are necessary for

the compactness of F.

Proof. Sufficiency. Let F be the closure of F in (Yx, re), where r,

is the pointwise topology. Then t„ is jointly continuous on F; therefore

F^C(X, Y) and tp = tc on F. Since F^Y\xeX (F(x))~, (b) implies that

F is ^-compact, therefore rc-compact. Let F denote the closure of F in

(Yx,tc), so that F^F^F. Since F is closed in (F,tc) = (F, tb), F is

closed in (Yx, rp), and therefore F=F. Thus F is the closure of F in

(C(X, Y), rc), so that (a) implies Fç Fç F*. It follows that Fis rc-compact.

Necessity. Since F is rc-compact, F* is closed in (C(Jf, Y), tc). For

x g X, F(x) is compact, therefore (F(x))~~ is compact (because 7 is

regular). By 2.2, Fis evenly continuous.

Remarks. (1) If Fis regular, the condition (a) of (4.1) is weaker than

the classical condition :

(a') F is closed in C(X, Y).

If Y is Hausdorff, (a) coincides with (a').

(2) If Y is regular and non-Hausdorff, (a) is strictly weaker than (a').

In fact, (C(X, Y), rc) is regular and non-Hausdorff, therefore not 7\.

So there exists fe C(X, Y) such that {/} <=({/})" £{/}*: Then F={/}

satisfies (a) but not (a'). Consequently, if we read (a') for (a) in 4.1, the

theorem would be weakened in the sufficiency direction, and rendered

false in the necessity direction.

(3) Theorem 4.1 strictly contains the Corollary 4.4 of Noble [8, p. 403],

the Ascoli theorem of Myers (stated implicitly in his Theorem 4.1) [7,

pp. 497-498], the Ascoli theorems of Bagley-Yang [1, pp. 704-705], and

the Ascoli theorem of rCelley-Morse [6, p. 236]. Because of Theorems

(3.8) and (3.8a) of Poppe [10, pp. 115-116], 4.1 strictly contains the

Ascoli theorem of Gale [5, p. 304].
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