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ERGODIC PROPERTIES  OF BOUNDED ¿^OPERATORS

RYOTARO  SATO

Abstract. Individual ergodic theorems for bounded Lx-

operators are proved in §1, and the problem of existence of positive

invariant functions for positive /^-operators is considered in §2.

A decomposition theorem similar to that of Sucheston [12] is

proved in the last section.

1. Individual ergodic theorems. Let (X, Jt', m) be a <r-finite measure

space and LP(X) = L]>(X, Jt', m), l^/>_co, the usual (complex) Banach

spaces. If A e Jt then lA is the indicator function of A and LV(A) denotes

the Banach space of all ¿„(^-functions that vanish a.e. on X— A. Let

T be a bounded linear operator on LX(X) and t its linear modulus [2].

Thus t is a positive linear operator on LX(X) such that || -r-f|x = |J Y"]|^ and

Tg=sup{| Tf\ ;fe LX(X) and \f\ ^g} for any O^g e LX(X). The adjoint of
ris denoted by T*. Throughout this section it will be assumed that there

exists a strictly positive function s in La0(X) such that

(1) t*s _ s   a.e.

Clearly if Fis a contraction then t*1_1 a.e. Letank («, Â:=0, 1, • • •) be a

matrix of numbers such that
CO

(2) lim2aB.fc = l,
"   fc=0

CO

(3) lim 2 <V.A+i = b

whenever b0, bx, ■ ■ • is a bounded sequence of numbers for which

CO

lim 2 <V,A = b
n'   k=0

exists and is finite, where («') is a subsequence of («). Let wx, w2, ■ ■ • be a

sequence of nonnegative numbers whose sum is one, and let u0, ux, ■ • • be

the sequence defined by w0=l and un = wnu0+- • ■ + wxun_x for «_1. In

this section, under these conditions, we shall prove the following theorems.
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Theorem 1. Ifp0, Pu'" & a sequence of nonnegative measurable func-

tions on X with \Tg\^Pn+1 a.e. whenever g e Lt(X) and \g\^pn a.e. then

for any fe Lt(X) the limit

(*) lim ( 2 ukTkf(x)\ I ( 2 ukPk(x))
n   \k=0 I I    \k=0 I

exists and is finite a.e. on the set {x g X; 2£L0 ukPk(x)~>ty-

Theorem 2. Suppose there exists a strictly positive function h in LX(X)

such that

(i) 2£Lo an icrkh exists in the weak topology for any n, and

(ii) the set {][£=<> fl«,*1"*«; n=®} /J weakly sequentially compact in LX(X).

Then for any fe LX(X) the limit

(**) \im( 2 ukTkf(X))/(2uk)

exists and is finite a.e.

Proof of Theorem 1.    For sfe LX(X), where/G LX(X), define

(4) VT(sf) = sTf   and    VT(sf) = srfi

Since {sfifeL^X)} is a dense subspace of LX(X) and WV^sf)]^^

ll^(i|/l)lli=IIH/l Ii-I(t*ä)|/| liat>/li, ^r and VT may be considered
to be linear contractions on LX(X). An easy argument shows that VT

coincides with the linear modulus of VT. Let g e LX(X) and \g\^spn a.e.,

and choose an increasing sequence glt g2, • ■ • of nonnegative integrable

functions on X such that limn sgn = \g\ a.e. Then \VTg\ = K\g\ =

lim„ srgn^spn+1 a.e., and hence the ergodic theorem of [9] completes the

proof of Theorem 1.

Proof of Theorem 2. Let g e LX(X) and («') a subsequence of («)

such that 2£=o on.¡k T*w converges weakly to g. Then it follows from a

slight modification of an argument of [10] that

(5) lim -2vk(sh)-sg = 0,
i

and that sg>0 a.e. on C and sg=0 a.e. on D, where C and D denote the

conservative and dissipative parts [1] of VT, respectively. Hence Theorem 1

completes the proof of Theorem 2.

2. Invariant functions. In this section we shall assume that (X, JÍ, m)

is a probability space and T is a positive linear operator on LX(X) such

that there exists a strictly positive function s in LW(X) with T*s^s a.e.
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The operator T is called conservative if 2iK=o Tkf(x)= co a.e. for any

strictly positive function fe LX(X). A measurable set A is called closed if

fe LX(A) implies Tfe LX(A). The purpose of this section is to prove the

following theorems.

Theorem 3. If T is conservative and satisfies the condition of Theorem

2 then there exists a strictly positive function g in LX(X) with Tg=g and

hence if, in addition,

(6) sup -2?' <   CO

then the mean ergodic theorem holds for T; i.e., for any f e LX(X) the

sequence (1/«) 2£=o Tkf converges in the norm topology.

Corollary 1 (cf. Fong [5, Theorem 3]). If T satisfies (6), then a

necessary and sufficient condition that T have a strictly positive invariant

function in LX(X) is that T be conservative and for any A e Jt the limit

(7)

exist.

lim-V  |T**T. dm
1   71—1     e*

lim i J  P

Theorem 4.    If T satisfies (6), then the following conditions are equivalent.

(0) There exists a strictly positive function f0 e LX(X) with Tf0=f0.

(i) A e Jt and m(A)>0 imply inf„ j" T*n\A dm>0.

(ii) A e Jt and m(A)>0 imply

lim (sup-2
n     \   j     n j.=0 J

T*k+ilA dm) > 0.

Theorem 5.    If T satisfies (6), then the space X is the disjoint union of

two uniquely determined measurable sets P and N such that

(a) P is closed,

(b) there exists an he LX(P) with «>0 a.e. on P and Th=h,

(c) for any fe LX(X) the limit

/(x) = lim-lP2^/W

exists and is finite a.e., sfe LX(P) and Tf=fa.e.; moreover we have

lim
(1      "=J \ II
ilp^T*/-/)     =0,
n      k=o I lit



1973] ERGODIC   PROPERTIES  OF  BOUNDED Lj-OPERATORS 543

(d) if N=X—P then N is a union of countably many sets At G -J¿ with

lim A 2 f Tkfdm =0
n  n k=0 Ja,

for any 0^/g L\(X).

Theorem 4 is a generalization of results obtained by Neveu [7] (see also

[8]), Dean and Sucheston [3] and Fong [5], and Theorem 5 is a generaliza-

tion of results obtained by Krengel [6] and Fong [5].

Proof of Theorem 3. The first half of the theorem is direct from

the argument in the proof of Theorem 2, and the second half follows from

the mean ergodic theorem (cf. [4, Theorem VIII.5.1]).

Proof of Theorem 4. For the purpose of proof we introduce a

third condition:

(iii) A e Jf and m(A)>0 imply

lim inf- 2 ¡T*k\Adm > 0.
"        n k=0 J

The proof follows the scheme (0)=>(ii)=>(i)=>(iii)=>(0). The implication

(i)=>(iii) is obvious. The following two implications (0)=>(ii) and (ii)=>(i)

follow from the same arguments as in [5, p. 80]. Thus we prove here only

the implication (iii)=>(0).

Let L be a Banach limit and define a positive linear functional <p on

LX(X) by the relation

?<m) = L05 fr**«dm),       ueLtrj(X).

If we denote by T** the adjoint of T* then, for any O^u e LX(X),

(T**<p-<p)u = <p(T*u-u)=L((lln) $ (T*nu-u)dm)^L((\¡n) $ T*nu dm)^

0, and hence T**q> — (p^0. Thus if we let (pn = (\¡n) 2kZl T**ky then

O^tp^y^cp^- ■ • and the \\<pn\\ are bounded, whence there exists a

positive linear functional cp^ on LX(X) such that lim„(|o500 — <p„||=0. It is

now easy to see that T**q>œ = q>œ. Set p(A) = cpao(\A) for A e Jl. Then p

is a finitely additive measure on Jt vanishing on sets of m measure zero.

Let p—pm-\-pc be the unique decomposition of p, where pm^0 is a

countably additive measure on JÍ and where pc^0 is a finitely additive

measure on Ji such that if X^.0 is a countably additive measure on Ji

with k<p.e then X=0 [11, Theorem 3]. Then T**pm<:T**p=p=pm+pc

and hence T**pm—pm<pc, from which it follows easily that T**pm^pm.

We next show that pm is equivalent to m. Assume the contrary: there

exists a set E e M with pm(E)=0 and m(E)>0. Then Theorem 4 of [11]

implies that there exists a set A e Jt with A^E, pc(A)=p(A) — 0 and
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w(/4)>0. But this is impossible because, by (iii),

KA) ̂  <pMa) = <áU) = l(- 2 T*H¿ dm)

= lim inf- 2 (V**U dm > 0.
«        " ¡fc-0 J

To complete the proof it is now sufficient to show that T**pm—p,m.

But to see this, since T**p,m^pm, it suffices to show that T*s=s. If this

fails to hold then there exists a set A e Jt with m(A)>0 and a positive

constant c such that s—T*s^.clA, and hence we have

lim inf- 2 [cT*klA dm = lim inf-2 [t*\s - T*s) dm
n        n k=0 J n        n fc=0 J

= lim inf- [(s - T*s)dm
n       n J

= lim- [
n   n J

s dm = 0,

which contradicts (iii). This completes the proof of Theorem 4.

Proof of Theorem 5. An argument similar to that of [5, Proposition

2] is sufficient, and we omit the details.

Remark 1. It may be readily seen that if T has a strictly positive

invariant function /0 e LX(X) then the class J of all closed sets forms a

o--subfield ofJt (cf. [1]). Thus if/6 LX(X), we shall denote by E{f\J} the
conditional expectation of / with respect to J. Applying the Chacon

identification theorem [1], we have the following results.

(a) IffeLx(X)then

1 tf   k           E{sf I J)
lim-^> T/ = /0-j-    a.e.

n   n k=0 E{sf0 | J}

(b) IfueLaa(X)then

lim - > T* u  = s -Ljn,-f    a.e.
n n^0 E{sfa\J}

3. Decomposition theorem.    In this section we shall prove the following

Theorem 6 (cf. Sucheston [12, Theorem 1]).    IfT is a positive linear

operator on LX(X) satisfying (6), then the space X uniquely decomposes into

two measurable sets Y and Z such that

(i) fe LX(Z) implies Tfe LX(Z),

(ii) iffe LX(Z) then limn||(l/«) Tel T*f\\x=0,
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(iii) there exists a nonnegative function s in Lœ(Y) with s>0 a.e. on Y

and T*s=s.

Proof. If we let w=lim sup„(l/«) 2*Io T*kl, then an easy calculation

shows that ueLx(X) and T*u^u a.e. Next if we let s=lim„(l/«)x

!LlZlT*ku, then it follows that 0^seLx(X) and T*s=s. Put Y-

{x e X; s(x)>0} and Z=X- Y. If 0^/e LX(Z) then

lim [(-ny Tkf) dm = lim [f(- Y r**l) dm
" J \«fo       / n J    \nk=0 1

_ l/u dm _^   /s dm = 0.

Thus (ii) follows, (i) is clear. The proof is complete.

Remark 2.    By Theorem 1, if/e LX(X) and 0<g e LX(X) then the limit

lim(2r*/(x))/(2T*g(x))
n    \k=o II    \fc_o '

exists and is finite a.e. on YC\{x e X; 2itLo F*g(x)>0}. But in general this

does not hold on Zn{x e X; ¿£0 Tkg(x)>0} (see Fong [5, p. 77]).

Corollary 2. Let T be a positive linear operator on LX(X) satisfying

(6), and suppose that lim supj|(l/«) 2£r¿ Tkg\\x>0 for any 0<:g e LX(X)

w'th ||g||i>0. Then there exists a strictly positive function s in LX¡(X) with

T*s=s.
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