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ON  GOING  DOWN FOR  SIMPLE  OVERRINGS

DAVID   E.   DOBBS1

Abstract. Let R be an integral domain with quotient field K.

If R is Noetherian : then the Krull dimension of R is at most l<=>for

all overrings 5 of R, R<=S satisfies going down. R is Dedekind

(resp., PID)oÄ is Krull (resp., UFD) and, for all uG K, R<=R[u]

satisfies going down. R is Priifero/? is integrally closed, every

intersection of two principal ideals of R is finitely generated, and

R^R[u] satisfies going down for all uE K.

1. Introduction and notation. Let R be a (commutative integral) domain

with integral closure R and quotient field K. Our main purpose is to study

going down (GD) between R and its overrings (that is, i?-subalgebras of

K). Using GD, we obtain characterizations of Prüfer domains in Corollary

4, of Noetherian domains of (Krull) dimension at most 1 in Proposition 7

and Corollary 9, and of Dedekind domains and PID's in Corollary 10. As

may be expected from the characterization of Bézout domains given by

Dawson and the author in [1, Corollary 4.4], a special role is played by

simple overrings (that is, ones generated over R or R by single elements of

K).
Any unexplained terminology is standard, as in [2], [3], and [7].

2. Domains characterized via going down. We begin by quoting the

following result about FC domains (i.e., domains for which every inter-

section of two principal ideals is finitely generated). Observe that a domain

is FC if and only if every element of its quotient field has finitely gener-

ated conductor.

Lemma 1 (McAdam [6, Theorem 2]). Let R be FC and let Tbe an over-

ring of R such that R is integrally closed in Tand R<^ Tsatisfies lying over

(LO). ThenR = T.

Lemma 2.    Let R be quasi-local. Assume either

(a) R is a Krull domain such that dim(/?)^2 or

(b) R is an integrally closed FC domain which is not a valuation ring.

Received by the editors July 10, 1972 and, in revised form, October 30, 1972.

AMS (MOS) subject classifications (1970). Primary 13F05.

Key words and phrases. Going down, Krull domain, FC domain.

1 This work was supported in part by NSF Grant GP-28409.

© American Mathematical Society 1973

515



516 D.   E.   DOBBS [August

Then there exists u e K such that u $ R, u~x $ R and R<^R[u] does not

satisfy GD.

Proof. If R is a Krull domain, the assumption about its dimension

readily implies that R is not a valuation ring (cf. [2, Theorem 35.16]).

Hence, in case either (a) or (b) holds, there exists u e Ksuch that u £ R and

w1 £ R. If M is the maximal ideal of R, then Chevalley's lemma [3,

Theorem 55] implies that M survives in either R[u] or R[u-1]. Without loss

of generality, MR[u]~¿R[u], and so there exists a prime of R[u] lying over

M.
Now, suppose that the lemma is false. Then R^R[u] satisfies GD and,

since R is quasi-local, RaR[u] also satisfies LO. In case (b), Lemma 1

shows u e R, a contradiction. For case (a), let P be any prime of R of

height 1. As RP is a discrete (rank 1) valuation ring and RP<= RP[u] =

R[u]R\p inherits LO from R^R[u], Lemma 1 implies u e RP. Hence

u £ Ç\ RP = R, a contradiction, to complete the proof.

Theorem 3. Assume either (a) R is a Krull domain such that dim(i?)^2

or (b) R is an integrally closed FC domain which is not Prüfer. Then there

exists we K such that R<=R[u] does not satisfy GD.

Proof, (a) Let M be a maximal ideal of R of height at least 2. Note

RM is Krull [2, Corollary 35.6], quasi-local, of dimension at least 2. If the

result is false, then RM<^RM[u]=R[u]R\M inherits GD from R^R[u],

for all u e K. This contradicts case (a) of Lemma 2.

(b) Since R is not Prüfer, there exists a maximal ideal M of R such that

RM is not a valuation ring. As RM is integrally closed and FC, the proof

concludes as above, this time using case (b) of Lemma 2.

Corollary 4. R is Prüfer if and only if the following three conditions

hold: (i) R is integrally closed; (ii) R is FC; (iii) Ä<= R[u] satisfies GDfor all

ucK.

Proof. Let R be Prüfer. It is well known that (i) and (ii) hold. As

explained prior to [1, Proposition 3.6], (iii) also holds.

The converse follows immediately from case (b) of Theorem 3.

We remark that Corollary 4 extends a result of Quentel [8, Corollaire

2]. A different extension appears in [6, Theorem 1].

Lemma 5 (resp., Proposition 8) will, in special cases, relate the question

of unibranchedness of R in R to that of GD for simple overrings generated

by elements of R (resp., of K\R). Lemma 5 was essentially proved by

McAdam in [5, Theorem 2].

Lemma 5. Assume R is Noetherian, T is an overring of R, and /?<= R[u]

satisfies GDfor all u e T. If P is a prime of R of height at least 2, then at

most one prime of T lies over P.
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Corollary 6.    Let R be Noetherian and T an overring ofR contained in

R. The following conditions are equivalent:

(i) Re T satisfies GD;

(ii) Re S satisfies GD for all rings R^S^T;

(iii) R^R[u] satisfies GD for all u e T.

Proof. For rings R^S^T, integrality shows S<^T satisfies LO,

whence [5, Lemma 1(2)] yields (i)=>(ii). Clearly, (ii)=>(iii). Finally,

assume (iii). If /?<= T fails to satisfy GD, there exist primes PxgP2 of R

and Q of T such that QC\R=P2 and no prime of Tcontained in Q lies over

P1. Since /?<= T satisfies GU and LO [3, Theorem 44] and P2 is unibranched

in T (by Lemma 5), we easily obtain a contradiction. Thus (iii)=>(i), to

complete the proof.

Proposition 7. Let R be Noetherian. The following conditions are

equivalent :

(i) dim(*)<l;
(ii) Se T satisfies GD for all overrings S^TofR;

(iii) R<=S satisfies GD for all overrings S of R.

Proof. (i)=>(ii) follows immediately from the Krull-Akizuki theorem

[3, Theorem 93], and (ii)=>(iii) is clear. Finally, if P is aprime of R of

height greater than 1, then [4, §13] supplies a discrete (rank one) valuation

overring V of R such that the maximal ideal of V lies over P. Since RcV

does not satisfy GD, we conclude that (iii)=>(i).

Proposition 8. Assume R^R[u] satisfies GD for all u e K\R. Assume

either (a) R is a Krull domain such that dim(.K)_2 or (b) R is FC and not

Prüfer. Then there exists a nonmaximal prime ofR which is not unibranched

inR.

Proof. Note that dim(Ä)=dim(Ä). Hence, by applying the appro-

priate case of Theorem 3, there exists u e K such that RcR[u] does not

satisfy GD. Thus, there exist primes M1^M2 of R and Q of R[u] such that

Q(~\R = M2 and no prime of R[u] contained in Q lies over M1. Let P¡ =

M(r\R (/=1,2). Since R<^R[u] satisfies GD, there exists a prime N of

R[u] such that NcQ and NC\R=P1. Then P1 is not unibranched in R,

as NCiR and M1 are distinct. Of course, the INC property for integral

extensions [3, Theorem 44] shows P1¿¿Pí, and so P, is nonmaximal, to

complete the proof.

We next show that, under an assumption of unibranchedness, we may

restrict consideration in part (iii) of Proposition 7 to simple overrings S.

Corollary 9. Let R be Noetherian such that every prime of R of height 1

is unibranched in R. Then dim(R) _ 1 if and only if R<= R [u] satisfies GD for

all u e K\R.
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Proof. The "only if" assertion is trivial. If the "if" assertion fails, a

consequence of the principal ideal theorem [3, Theorem 152] allows us to

choose a prime M of R of height 2. As Mori's theorem [7, Theorem 33.10]

shows R is Krull, it follows that A = (R)R\M, the integral closure of RM, is

also Krull. If ueK\A, then RM^A[u] inherits GD from RcR[u]. Thus,

case (a) of Proposition 8 provides a nonmaximal prime P of RM which is

not unibranched in A. Then P(~\R is a prime of R of height 1 which is not

unibranched in R, a contradiction, to complete the proof.

Corollary 10. Let R be Krull (resp., UFD). Then R is Dedekind

{resp., PID) if and only if R c R[u] satisfies GDfor all u e K.

Proof. As explained prior to [1, Proposition 3.6], the "only if"

assertions are immediate. To obtain the converses, apply [2, Propositions

31.6 and 35.2 and Theorem 35.16] and case (a) of Theorem 3.

Remarks, (i) The use of Theorem 3 in the preceding proof character-

izing PID's may be replaced by an appeal to [1, Corollary 4.4], since any

UFD is a GCD.

(ii) Since Lemma 1 appears in [7, (33.1), p. 114] for the case of No-

etherian R, the proofs of Lemma 2(a), Theorem 3(a), Propositions 7 and

8(a), and Corollaries 9 and 10 do not depend on the results in [6].

(iii) The question of characterizing the domains satisfying GD with

simple overrings is far from settled. We close by sketching an example2 of

a quasi-local integrally closed two-dimensional domain R such that

R c R[u] satisfies GD for all u e K and R is not valuation.

First, let 5 be a quasi-local integrally closed one-dimensional domain

which is not valuation (for example, construct 5 as in [3, 2-1, Exercise 5]).

Let M be the maximal ideal of S and F the quotient field of S. Define R

to be the restricted power series ring 5,+x/*'[[x]]. Then R is not valuation,

is integrally closed in its quotient field K=F((x)), and has only two non-

zero primes, viz., Af+;cF[[jc]] and /,=x/r[[x]].

It remains to show R<=R[u] satisfies GD whenever u e K. One reduces

quickly to the case u $ R, u~* $ R. If u $ F[[x]], then w1 e P, a contra-

diction. Hence u=v+w for some v e F\S and we P. Since R[u] = R[v] =

S[v]+P, we see that P is also a prime of R[u], whence R^R[u] satisfies

GD.
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