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ON  REPRESENTATIONS  OF  THE  GROUP  OF LISTING'S

KNOT BY  SUBGROUPS  OF  SL(2, C)

ALICE   WHITTEMORE1

Abstract. The subgroups G of SL(2, C) which represent the

group of Listing's knot are characterized by the traces of A, B and

AB, where A and B are matrices which generate G. From this it

follows that there exist finitely generated nondiscrete subgroups of

SL(2, R) which are not isomorphic to any Fuchsian group.

1. Introduction and statement of results. The special linear group

SL(2, C), where C is the field of complex numbers, is the group of all

2x2 matrices

(1.1)
a    b

Lc    d.
ad — be = 1,       a, b, c, d eC.

For A eSL(2, C) let o(A) denote the trace of A. The quotient group

SL(2, C)/{±/} is isomorphic to the group Í2 of all linear fractional

transformations T(z) = (az+b)¡(cz+d) of the extended complex plane

into itself with complex coefficients and determinant 1. In this paper an

element F of Í2 is identified with a matrix of the form (1.1), with the

understanding that a matrix and its negative define the same F.

Let Fn be a free group on n free generators xk, k=l, ■ ■ ■ , n; let p

be a representation of Fn by a subgroup G of SL(2, C). It is known [2],

[3] that the characters of all the elements of F„ can be expressed in terms

of the characters of a finite subset Sn of F„ consisting of the generators xk

and certain of their products, with |5„| = 2" —1. When ordered, the

2"—1 complex numbers o(p(u)), ueSn, determine an element op of

C2"-1, and the character manifold

STn = {oplp:Fn -*■ SL(2, C), p is  a representation}
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describes the continuum of all representations of F„ by subgroups of

5^,(2, C). When « = 2 and p(xx), p(x2), p(xxx2) do not all have trace ±2,

the point op = (o(p(xx)), o(p(x2)), o(p(xxx2))) of ,T2 determines the

representation p up to conjugation.

The braid group B„ is the group of automorphisms of F„ generated by

the automorphisms ßk, k=l,---,n—l, with ßk:xk—>-xk+x, ßk:xk+x->

xk+ixkXk+i, ßk'-Xi-^-Xi, i?¿k, k+l. The fact that every knot group can

be obtained from Fn (for appropriate n) by identifying the generators

xk with their images under an element ß of Bn [1] has motivated a long

standing conjecture of Wilhelm Magnus: the points of the manifold ¡Tn

corresponding to representations of a knot group are the fixed points of

the automorphism of ,Tn induced by the associated braid automorphism

ß e Bn. The following theorem describes the submanifold of .T2 corre-

sponding to representations of the group of Listing's knot.

Theorem 1. Let L = {a, b; R(a, b)) with R(a, b)=b-lar1bab-1abcrib-la

be a presentation of the group of Listing's knot; let A denote the set of

all subgroups of SL(2,C) which represent L. An abelian group Ce A

if and only if G is cyclic; a nonabelian group G E A if and only ifG=(A, B),

where o(A) = o(B) is an arbitrary complex number x, and

(1.2) o(AB) = \(l + x2 ± ((x2 - l)(x2 - 5))1'2).

The question of faithfulness of the representations given by the theorem

is open. The derived group L' of L is free of rank 2 [5], and a group G

in A will faithfully represent L if and only if G' is free of rank 2, but

there are presently no known criteria for determining the freeness of

subgroups of the groups in A.

For x e C let GX=(AX, Bx) be a nonabelian group in A with o(Ax) =

o(Bx)=x, and a(AxBx) given by (1.2). We may conjugate so that G±2 is

generated by

±
1    1

.0    1
±

1    0
t = e"13,

and for x^±2, Gx is generated by

~X     0

A   =

[1.3)
Lo x-1

B, =

X = l(x ± (x2- 4)
1/2

p I

p(x — p) — 1    X — /u

/x = (Xz—x)/(X2— 1), where z=o(AB) is given by (1.2). If Gx is regarded

as a subgroup of Í2, then A_X=AXX, B_X=BX1; hence GX=G_X. G5v* is
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torsion free metabelian, Gx is generated by elliptic transformations of

order 3 and is not discrete [4, Theorem 2.3]. For x real, x2>5, Gx is

not metabelian; moreover the following theorem holds.

Theorem 2. Let z=\(l+x24-((x2-l)(x2-5)r12) where x is real

and transcendental with x2>5. Let G=(A,B) where A=AX, B=BX are

given by (1.3). G is a finitely generated nondiscrete subgroup of SL(2, R)

which is not isomorphic to any Fuchsian group.

A more detailed description of the nonabelian groups in A awaits

further investigation.

2. The proof of the theorems.    We need the following facts  about

the trace function on SL(2, C) [2]:

Fora\lA,B,CeSL(2,C)

(2.1) o(A) = o(A-\
(2.2) a(AB) = o(A)- o(B)-o(AB-1),

(2.3) oiABC)=oiA) ■ oiBQ + oiB) ■ a(AC) + a(C) ■ a(AB)-aiA) • a(B)

o(C)-o(ACB).

When applying (2.3) to rewrite o(XxX2 ■ ■ ■ Xn), X( e SL(2, C), i=

1, • ■ • , n, we say that o(XxX2 • ■ ■ X„) is expanded according to the sub-

division Xx • • • Xk(Xk+x ■ ■ ■ Xm)Xm+1 ■ ■ ■ Xn if A -Xj • • • Xk, B = Xk+x ■ ■ ■

Xmi c = Xm+X • ■ • Xn.

The proof of Theorem 1 requires the following two lemmas.

Lemma 1.    Let A, Be SL(2, C); let R=B-1A~lBAB-1ABA~1B~1A and

suppose a(A) = o(B)=x, o(AB)=z. Let f=f(x, z)=x2—z—2, g=g(x, z) =

z2-(l+x2)z+2x2-l. Then

(i) o(RB)=x,

(ii) o(R)-2=fg2,
(iii) <y(RA~1)-x=x(2-z)fg.

Proof, (i) follows from the fact that RB and A are conjugate in

SL(2,C). Let C(x,z) = o(B-1A-1BA) = 2x2 + z2-x2z-2. Expansion of

o(R) via (2.3) according to the subdivision B~1A~1BA(B-1AB)A lB~lA,

using (2.1), (2.2) and the fact that the trace function is invariant under

conjugation, yields o(R)-2=x2(C- l)2-z(C2-C- l)-2=/g2.

Expansion of o(RAx) according to the subdivision

B1ABA(B~1AB)A-1B-1

yields o-(/v^-1)-jc=x(z(2-C) + C(C-1)-2)=x(2-z)/^.

Lemma 2.    Let A, B, Re SL(2, C) with o(A) = o(B)=x and a(AB)^2,

o(AB)9éx2-2. IfR satisfies a(R)=2, oiRA) = oiRB)=x, then R = I.
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Proof. If R^l then we may conjugate A, B and R so that R = (l l) ■

o(RA) = a(RB)=x implies that

A = f     Y )    for oc = \(x ± (xs - A)1'2),
\0    a"1/

and

ß±i       /*     M y,uEC.

\0   a"1/

Hence ex(/L5)=x2-2 or o(AB)=2.

Proof of Theorem 1. Since L/L' is infinite cyclic [5] it is clear that

an abelian subgroup G of SL(2, C) belongs to A if and only if G is cyclic.

If G e A is nonabelian and p:L-+G is an epimorphism with p(a) = A,

p(b)=B, then since A and B are conjugate in G, o(A) = o(B). Without

loss of generality A is in Jordan canonical form. Using the notation

of Lemma 1, by (ii) either f(x, z)=0 or g(x, z)=0. In the latter case

(1.2) of the theorem is satisfied. If/(x, z) = 0 then x^±2, else G would

be abelian, contrary to assumption. Thus we may write

1 /V        ß    \
,x + - = x,     B=\ KM* — /") — ßy = I-

Ä \y    x — pi

Setting o(AB)=x2—2 and solving for p yields p — X and B=(*¡ ¿-i)

with either ß or y equal to 0. The relation /? = / forces X* — 3X2+1 =0;

hence x=A+l/A=51/2, o(AB)=3, and x, z=o(AB) again satisfy (1.2).

Conversely, let G=(A, B) e SL(2,C) with o(A) = o(B)=x, o(AB) =

Kl+*2±((*2-l)(*2-5))1/2). Then o(AB) is different from 2 and x2-2,

whence G is nonabelian. Since g(x, z)=0, by Lemma 1 o(R) = 2, o(RB) = x

and o(RA~1)=x; hence by (2.2) o(RA) = x. Lemma 2 now applies to

complete the proof.

Proof of Theorem 2.    For x2>5 and transcendental,

z = JO + x2 + ((x2 - l)(x2 - 5)Y'2),

and A and B given by (1.3), G is clearly a subgroup of SL(2, R). By

Theorem 1 G 6 A. By (2.2) o(BAB~2)=x2—z. The choices of x and z

imply  that BAB~2 is elliptic of infinite order, hence G is not discrete.

It is known [7] that a Fuchsian group of rank 2 has a presentation of

one of the following three types:

(i) Hk.lm=(C, D;C\D\(CDT) with l/k+l/l+l/m<l;

(ii) //^(CZMCßf);
(iii) Hkl=(C,D;Ck,D').

The relations in Hklm, and the fact that the traces of all group elements

are polynomials with integer coefficients in o(C), o(D), o(CD) [3], imply

A =
X     0

o r1
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that the traces of all elements in HkJ m are algebraic numbers. Thus G

cannot be isomorphic to a group of type (i). In case (ii), if cp:Hk-*G

were an isomorphism, then [A, B] would be conjugate in G to (p([C, Dy*1)

[6, Theorem 4], forcing a ([A, B]) to be algebraic. But the relation g(x, z) =

0 satisfied by x and z implies that o([A, B]) = z— 1, where z is transcen-

dental. To dispense with case (iii), one needs the facts, implicit in the

results of [5], that the derived group L' of L is free on two generators,

and that G is isomorphic to L if G' is also free of rank 2. For the derived

group of Hkj is free of rank (k—1)(/— 1); thus the assumption that G is

isomorphic to Hk ¡ implies that (k, /) = (2, 3) and that G' is free of rank 2.

But then G, and hence the group H23, would be isomorphic to the torsion

free group L, which is impossible.

This completes the proof of Theorem 2.
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