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Abstract. Groupoids (loops) possessing the left inverse

property (lip) (also the right inverse property) and crossed-inverse

(Cl) loops are characterized as subvarieties of the variety of

groupoids satisfying a single identity.

1. It is known that groups, Abelian groups, loops with the inverse

property and the weak inverse property loops, can be defined by means

of a single identity as a subvariety of the variety of groupoids [3], [5],

[6], [4]. In this paper, we give characterizations for (i) groupoids (loops)

with identity satisfying the left inverse property (lip) (also the right

inverse property), (ii) crossed-inverse (CI) loops, as subvarieties of group-

oids satisfying certain conditions.

A groupoid G( ■ ) is said to have the left inverse property (lip), if, for

every x e G, there is at least one a e G such that a • (xy)=y for all y e G.

Consequently, for given c, dEG, there is a unique x e G such that cx = d

holds. Similarly, G( • ) possesses the right inverse property (rip) if, for

each x e G, there is at least one b e G such that (yx) ■ b=y for every

y e G. If G( ■ ) has both lip and rip, then G is said to have the inverse

property and in this case G( • ) is a quasigroup (see [2, p. 111]).

A groupoid C7( • ) in which the equation ya = b has a unique solution

for y, for every given pair a, b e G is called a right quasigroup. Similarly,

if, for every pair a, b e G, there is a unique x such that ax=b holds in

G( • ), then the groupoid is called a left quasigroup.

Loops G( ■ ) in which the equivalent identities (xy) ■ p(x)=y or X(x) •

(yx)=y hold for all x, y e G are called crossed-inverse (CI) loops, where

p(X) is the right (left) inverse operator (see [1], [2]).

2. Let G( ■ ) be a groupoid. We say that G( ■ ) is an iso-lip (rip)

groupoid (or loop) provided there is a lip (rip) groupoid (or loop) G(*)

with unity which is a principal isotope of G(-) such that ■ and * are con-

nected by the relation x *y=x ■ X(y) (x *y=p(x) ■ y) for all x,yEG,

where X(p) is the left (right) inverse operator of C7(*).
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Theorem I. A necessary and sufficient condition that a groupoid G( • )

is an iso-lip groupoid is that the following identity,

(1) (vv) ■ [{(tt)x ■ (uu)(xy)} ■ (ww)} = y,

or,

0') [(vv) ■ {(tt)x ■ (uu)(xy)}}- (ww) = y,

holds for all x, y, t, u, v, w e G.

Proof. We will consider only (1). The proof for (1') is exactly the same

as that of (1). First, we will show that ( • ) is leftcancellative. Let a ■ s=a- r.

Setting in (1), first x = a, y=s and then x=a, y = r and using a ■ s=a • r,

we get s=r. Thus ( • ) is left cancellative.

Keeping /, u, v, x and y fixed in (1) and using the left cancellativity

of ( • ), we obtain,

(2) w ■ w = constant = e(say), for all vv e G.

Now (1) becomes

(3) e ■ [{(ex) ■ (e ■ (xy))} ■ e] = y, for all x, y e G.

In (3), y = e gives, by repeated use of (2) and the left cancellativity of

('),

(4) xe = x, for all x e G.

Now (3) can be rewritten as

(5) * • [(ex) ■ (e ■ (xy))] = y, for all x, y e G.

Put y=x in (5) to get, using (4), that

(6) e • (ex) = x, for all x eG.

Define the mapping X:G—"G, such that

(7) X(x) = e ■ x, for all x eG.

Then by (6) and the left cancellativity of ( • ), it follows that A is a permuta-

tion of G.

Now define C(*) as follows:

(8) x * y = x ■ X(y), for all x, y eG.

From (8), it is true that G(*) is a principal isotope of G( • ) and that

G(*) is a groupoid.

Further, using (6), (7) and (8), (5) becomes X[X(x) ■ X(xy)]=y, that is,
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X(x) * [x * X(y)]=X(y), that is,

(9) X(x) * (x * y) = y, for all x, y eG,

which shows that G(*) satisfies the lip.

Also, (8), (6) and (4) imply

(10) x * e = x = e * x, for all x e G.

Hence G( ■ ) is an iso-lip groupoid.

Conversely, let G( ■ ) be an iso-lip groupoid and let G(*) be the corre-

sponding lip groupoid with unity e such that (*) and ( • ) are connected by

(8) x * y = x ■ X(y), for all x, y E G,

where X is the left inverse operator of C7(*). It is easy to see that X(x) is

unique and x * X(x)=e = X(x) * x, for every x e G. Thus, X2(x)=x, for

every x e G, showing thereby that A is a permutation of G. From (8),

we get

(11) x ■ y = x * X(y).

So, x • x=x * X(x) = e, for all x e G, e ■ y=X(y) and y ■ e=y * e—y, for

all y e G. Hence (2), (4) and (7) hold true. Use (8), (11), (2), (4) and (7)

in (9) to get (1). This completes the proof of this theorem.

Corollary 1. Let G(-) be a right quasigroup in which (1) is true.

Then G( ■ ) is an iso-lip loop.

Proof. By Theorem 1, G( ■ ) is an iso-lip groupoid. Consequently

a * x=b is solvable uniquely for x in G(*), the associated lip groupoid

with unity. As G( • ) is a right quasigroup, y ■ a=b is uniquely solvable

for y in G( • ). This leads to the solvability of y * a=b for y in G( ■ )

showing, thereby, that G(*) is a lip loop. Thus G( ■ ) is an iso-lip loop.

Now, we merely state the corresponding results for rip.

Theorem 2.    A groupoid G( ■ ) is an iso-rip groupoid if, and only if,

(12) (ww) ■ [{(yx ■ uu) ■ (x ■ tt)} ■ (vv)] = y

or

(12') [(ww)-{(yx-uu)-(x-tt)}]-(vv)=y

is true for all x, y, t, u, v, w e G.

Corollary 2. Let G(-) be a left quasigroup in which (12) is true.

Then G( • ) is an iso-rip loop.

3. Let G( ■ ) be a groupoid. Then G( • ) is called an iso-CI loop, if

there is a CI loop G(*) which is a principal isotope of G( • ) such that • and
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* are connected either by x * y = p(x) ■ y or by x * y=x ■ X(y) where X

is the left inverse operator of G(*) and p = X~l, is the right inverse mapping.

Theorem 3. Let G( •) be a right quasigroup. Then G( • ) is an iso-CI

loop, provided

(13) x ■ (yx) = y ■ (tt),

holds for all x, y, t eG and conversely if G() is an iso-CI loop, then

(13) holds for all x, y, teG.

Proof. Let a ■ r=a ■ s. Then, first with y—a, x = r in (13) and then

with y=a, x=s in (13), we get r ■ (ar)=a ■ (tt)=s ■ (as)=s • (ar). Since

G( • ) is a right quasigroup, we obtain r=s, that is, the left cancellativity

of(-)-

Then from (13), by keeping x and y fixed and using the left cancellativity

we have

(14) t ■ t = constant = eisay), for every teG.

So, (13) becomes

(15) x • (yx) = ye, for all x, y eG.

Since G( ■ ) is a right quasigroup, from (15) we see that ax=b implies

ae=xb and is then uniquely solvable for x. Thus G( ■ ) is a quasigroup.

With y=e, (15) gives, using (14), that x • (ex) — e, that is,

(16) ex = x, for all x eG.

Now, consider the mapping X:G--G, such that

(17) X(x) = xe, for all x e G.

Then A is a permutation of G.

Now, define G(*) as follows:

(18) x *y = p(x) ■ y, for all x, y e G,

where p=X~x. Then G(*) is a principal isotope of C7( • ) and C7(*) is a

quasigroup.

x=e in (18) with (16) gives e * y=e • y—y, for all y e G.

y=e in (18) with (17) gives x * e = p(x) • e=x, for all x eG.

Therefore, e is the identity of G(*) and hence G(*) is a loop.

From (18), we have

(19) x • y = X(x) * y, for x, y e G.

Making use of (17) and  (19),  (15) becomes, x ■ (yx)=X(y), that is,
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x- [X(y) * x]—i(y), that is,

(20) X(x) *(y*x)=y, for all x,yEG.

Hence G(*) is a CI loop.

Conversely, let the right quasigroup G( • ) be an iso-CI loop. Let G(*)

be the corresponding CI loop such that (*) and ( • ) are connected by

(18) or (19), where X and p are the left and right inverse operators of G(*).

Then (20) holds good in G(*). Now, y=e in (20) gives X(x) * x=e.

Thus from (19) with y=x, we obtain (14).

Also, y = e in (19) gives (17). It is now easy to see from (20), that (13)

is true.

Thus the proof of this theorem is complete.

Theorem 4. Let G(-)bea left quasigroup. Then G( • ) is an iso-CI loop,

if and only if

(21) xy • x = (tt) • x

is satisfied for all x, y, t e G.

The proof of Theorem 4 is similar to that of Theorem 3.

Remark. Whereas the isotopy x * y = p(x) • y is taken into account in

Theorem 3, the isotopy x * y=x ■ X(y) is to be used in Theorem 4.

A loop G( ■ ) with identity e is said to be of exponent 2 if x ■ x = e

for all x e G.

Theorem 5. A groupoid G( ■ ) is a CI loop of exponent 2 if and only

if
(22) x ■ (yx ■ uu) = y,for all x, y, u e G.

Proof. We will show that under the assumption of (22), ( ■ ) is both

right and left cancellative.

Let va=wa. Then in (22), with x=a, y—v first and then x = a, y = w,

we get v = w. So, ( • ) is right cancellative. Let av=aw. Setting x = w,

y=a and x=v, y=a in (22), we obtain w • [aw ■ uu]=a=v • [av • uu],

from which and the right cancellativity of ( ■ ), we get the left cancellativity

of ( • ).

Changing only u in (22) and using the cancellativities of ( • ), we have

(23) uu = constant = e(say), for all ueG.

Now, (22) becomes

(24) x • (yx • <?) = y, for all x, y e G.
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Put;-* in (24) to get, with the use of (23), that

(25) xe = x, for all xeC,

so that (24) takes the form,

(26) x ■ yx = y, for all x, y e G

From (25) and (26) with x=e, we get

(27) ey = y, for all y e G,

showing thereby that e is the identity of G( • ). By (23), it follows that

G( ■ ) is of exponent 2 and by (26) it follows that G( • ) is a CI loop. The

converse is trivial. This completes the proof of this theorem.

I express my sincere thanks to the referee for the useful suggestions

which improved the presentation of the paper.
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