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A SECOND ORDER NONLINEAR OSCILLATION THEOREM1

JAMES  S.   W.   WONG

Abstract. An oscillation criterion is given for the second order

nonlinear equation x"+a(t)\x\y sgn .v=0, y>\, where the coef-

ficient a(t) is not assumed to be nonnegative for all large values of t.

Consider the second order nonlinear differential equation

(1) x" + a(i) \x\y sgn x - 0,       y > 0,

where a(t) e C[0, oo). We restrict our attention to solutions of (1) which

exist on some ray [/0, oo), where /0=0 may depend on the particular

solution. Such a solution is said to be oscillatory if it has arbitrarily

large zeros. Equation (1) is called oscillatory if all such solutions are

oscillatory. For a general discussion on nonlinear oscillation problems,

we refer the reader to [14]. We are here concerned with sufficient conditions

on a(t) for the oscillation of (1) when a(t) is allowed to assume negative

values for arbitrarily large values of t. The well-known Wintner-Leighton

oscillation criterion for the linear equation, i.e., equation (l)when y—l,

states that if a(t) satisfies

(2) lim       a(t)dt = +<x>,
2'-oo  Jo

then equation (1) is oscillatory for y=\, see [12], [8]. Waltman [11]

showed that condition (2) is also sufficient for the oscillation of (1) when

y>\. Bhatia [1] and Wong [13] independently generalized Waltman's

result to more general nonlinear equations showing in particular that

condition (2) is sufficient for oscillation of (1) for all y>0.

We note that Wintner [12] in fact proved a stronger result, namely,

if a(t) satisfies the weaker condition

1   CT C
(3) lim — a(s) ds dt = +oo,

r-oo T Jo  Jo
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then equation (1) is oscillatory for y=\. Clearly, condition (2) implies

condition (3). It is therefore of interest to investigate whether the weaker

hypothesis (3) is sufficient for the oscillation of (1) for all y>0. Recently,

Kamenev [6] proved that for 0<y<l, the weaker condition

1   CT r
(4) lim sup — a(s) ds dt = + co,

¡r-»»    T Jo Jo

suffices for the oscillation of (1). The purpose of this note is to provide a

partial solution to this problem by proving that condition (4) together

with the following condition

(5) lim inf \a(s)ds = -X > -oo,       X > 0,
i-»«o   Jo

imply oscillation. This gives credence to the conjecture that the original

Wintner's oscillation criterion (4) remains valid for equation (1). Clearly,

condition (2) implies condition (5), hence our result generalizes that of

Waltman.

We now state and prove the following

Theorem. Suppose that a(t) satisfies conditions (4) and (5), then equation

(1) is oscillatory when y> 1.

Proof. Assume the contrary, then there exists a solution x(t) which

may be assumed to be positive on [/„, co) for some t0^.0. Dividing (1)

through by xy(t) and integrating from t0 to /, we obtain

(6) x'WO) + y\ Htt ds + AW « c
f7x'(s)Y

L\xß(s))
— ) ds + A(t) = cx,
(s)

where ß=(y+\)ß,  cx=x~y(t0)x'(t0),  and  A(t) denotes  the  indefinite

integral f« a(s) ds. Integrating (6) once more from t0 to t, we obtain

(7)     —!— x-y+\t) + y[ n^jrJdr ds + Ca(s) ds = cxt + c2,
1 — y Jto Jto \xp(t)/ Jio

where c2= 1/(1 -y)x-y+1(t0).

We distinguish three cases of the behaviour of x'(t), namely, (i) x'(t)

oscillatory on [t0, co), (ii) x'(t)>0 on [t#, co) for some t*^t0, and (iii)

x'(t)<0 on [?*, co) for some t^t0, and show that the assumption x(t)>0

leads to contradiction in each case.

Suppose that x'(t)is oscillatory, then there exists a sequence |i„:n=l, 2,

3, • • ■ } such that x'(tn)=0 and tn-^oo. It follows from (6) and condition
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(5) that x'x~P(t) e L2(tB, oo). By Schwarz's inequality, we note

(8)
1

(1 - ß)2x2ß-\t) fJig

As)

x"(s)
ds <, f Y-^Y

~    Jto \xß(s)J
ds.

Recall that 2ß—2 = y— 1, and so (8) implies that there exists a constant

M such that

(9) x-y+\t)l(y -\)^Mt,        t^t0.

Applying the estimate (9) in (7), we obtain the following inequality,

valid for all t^.t0,

— Mt + \ A(s) ds -5 Cji + c2,

which contradicts condition (4).

Next, suppose that x'(t)>0 for /^r,^/,,, thus x(t)^x(t0) and x~w(t)<

x~y+1(t0). We deduce from (7) that

1
— 3T^i%) + j A(s) ds rg c,i + c2,
— y Jio

which again contradicts condition (4).

Finally, we assume that x'(t)<0 for t^.t^t0. By condition (5), we

can estimate (6) as follows,

x'(t) C* *"(«)
(10) --±f^-(cl + X) + y     -~/:ds.

Xy(t) Jto Xy^ (s)

If the integral in (10) is finite as r—>-oo, we can deduce a contradiction

in a similar way as the case when x'(t) is oscillatory. Otherwise we may

choose T^r* such that

Y
CT x (s)

—y- ds = 1 + c, + X.
k xy+1(s)

r x%.,x'2(±

\s)

For f^.T, we multiply (10) through by

_ x'(t)

' x(t)

and integrate from T to t to obtain

/ C x'2(s)      \ C -x'(s)

which together with (10) yields

(11) -x'(t)lxy(t)^xy(T)¡xy(t).
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It follows from (11) that *'(') = —xy(T)<0, which contradicts the assump-

tion that x(t)>0. This completes the proof.

Remark 1. Conditions (4) and (5) are also sufficient for the oscillation

of (1) with y=l. The validity of this result for the linear case follows from

a result of Hartman [5], see also Coles [3] and Macki and Wong [9].

Remark 2. For 0<y<l, condition (4) gives an immediate contra-

diction in (7). This offers an alternate argument for Kamenev's result.

Remark 3. Erbe [4] gives another interesting generalization of Walt-

man's result. Erbe introduced the following condition on a(t) that for all

large t

(12) lim inf)   a(s)ds > 0,
t->OD       JT

and showed that if a(t) satisfies (12) and that the linear equation

(13) u" + Xa(t)u = 0

is oscillatory for all A>0, then equation (1) is oscillatory. We note that

although condition (3) or conditions (4) and (5) are sufficient for the

oscillation of (13) for all X>0, condition (12) is not implied by condition

(5), (in fact, the converse is true). This shows that our result is not com-

patible with that of Erbe's. Condition (12) was also used in Bobisud [2],

see also Onose [10].

Finally, we present an example of a(t) which satisfies conditions (4)

and (5) but fails to satisfy (12). Thus, Erbe's result does not apply in this

case. Define

a(t) = olJ + ßk,        Ak < t < Ak + 1

= Yk' +A>        Ak+ \ ^t^Ak +2

= ikt + r¡k,        Ak + 2 ^ t ^ 4k + 3

= akt + rk,        Ak + 3 ^ t < Ak + A,

where «*=(*+ 1)+Ztj (1/20. /?*=~(^Ki ?**=-*» àk=-(Ak+2)yk;
&«--«»-(1/2**1), «fc—-(4*+2)ft; <rfc=-ft, rk=-(Ak+A)ak. It is
easy to see that a(t) e C[0, co) and satisfies

lim inf a(t) = -co,       Iim sup a(t) = -fco.
t-* en 1-> x

Denote A(t)= Jó a(-s) ds. It is readily verified that

A(Ak) = - t1,       A(Ak + 1) = ^^ -~fL,
,6x2l 2 2 «tí 2«

¿•-Li 1    *+1    1
A(Ak + 2) = k+ I, A(Ak + 3) = '^L1 -- >-.

2 2 £í T
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From  this   we   deduce   lim inf,^^ A(t)= — 1,   lim sup, .,„ A(t)= + oo.

Denote s/(T)=(l/T)jl A(t)dt. We compute and find

s4(4n + 4) = -Î-V [A(4k) + A(4k + 1)
4(n + l)*±o

+ X(4/c + 2) + A(4k + 3)]

1

4(n + 1) lt=0     \ ¡ = 1   Z Z '

2 2*4(n + 1)£S

-"(«+!) = ",
4(n + 1) 4

which shows that a(r) satisfies condition (4).
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