PROBABILITY MEASURES ON SEMIGROUPS

PETER GERL

ABSTRACT. Let S be a discrete semigroup, P a probability measure on S and $s \in S$ with $\limsup_n (P^{(n)}(s))^{1/n} = 1$. We study limit theorems for the convolution powers $P^{(n)}$ of P implied by the above property and further the class of all semigroups with this property. Theorem 3 relates this class of semigroups to left amenable semigroups.

1. Introduction. Let S be a discrete semigroup and P a probability measure on S, that is a real valued function on S with $P(s) \ge 0$ for all $s \in S$ and $\sum_{s \in S} P(s) = 1$. Kesten ([4], [5]) characterized amenable groups by means of the asymptotic behavior of convolution powers of symmetric probability measures defined on the group. A more precise information for the asymptotic behavior was obtained in [2] and [3] for symmetric probability measures on a discrete amenable group. In what follows we will derive similar theorems for probability measures on discrete semigroups.

Let S be a discrete semigroup, P a probability measure on S. Then Supp $P = \{s/P(s) > 0\}$ denotes the support of P. To say Supp P generates S means: $S = \bigcup_{n=1}^{\infty} (\text{Supp } P)^n$.

For probability measures P, Q on S define their convolution P * Q by

$$P * Q(s) = \sum_{s_1 s_2 = s} P(s_1)Q(s_2)$$

(the summation is to be extended over all representations of s as a product of two elements s_1 , s_2 of S). P * Q is again a probability measure and Supp $P * Q = (\text{Supp } P) \cdot (\text{Supp } Q)$. We often write $P^{(1)} = P$, $P^{(n)} = P * P^{(n-1)}$.

Kesten obtained the following characterization of discrete amenable groups:

Let G be a discrete group with unit element e, P a symmetric probability measure on $G(P(g)=P(g^{-1}))$ for all g in G) such that G is generated by

Received by the editors January 2, 1973.

AMS (MOS) subject classifications (1970). Primary 43A05, 43A07; Secondary 20M10, 60B15, 60F99.

Key words and phrases. Semigroup, probability measure, convolution, limit theorems, amenable semigroup.

Supp P; then

G is amenable
$$\Leftrightarrow P[e] = \limsup_{n \to \infty} (P^{(n)}(e))^{1/n} = 1$$
.

- 2. Limit theorems. Let S be a discrete semigroup; if there exists a probability measure P on S with the properties
 - (1) Supp P generates S, and
- (2) there exists an $s \in S$ with $P[s] = \limsup_{n \to \infty} (P^{(n)}(s))^{1/n} = 1$ then we call S an A-semigroup or, if we want to specify P, (S, P) an A-pair.
- Let (S, P) be an A-pair with P[s]=1 for some $s \in S$. Let $s' \in S$; since Supp P generates S there exists a natural number k with $P^{(k)}(s')>0$. Then

$$P^{(n+k)}(ss') = \sum_{s_1 s_2 = ss'} P^{(n)}(s_1) P^{(k)}(s_2) \ge P^{(n)}(s) P^{(k)}(s')$$

and (k is fixed)

$$1 \ge P[ss'] = \limsup_{n} (P^{(n+k)}(ss'))^{1/(n+k)}$$

$$\ge \lim_{n} \sup_{n} (P^{(n)}(s))^{1/n} \lim_{n} (P^{(k)}(s'))^{1/n} = P[s] = 1.$$

Therefore we have

PROPOSITION 1. $P[s]=1 \Rightarrow P[ss']=P[s's]=P[s'ss'']=1$ for all s', $s'' \in S$.

S is called *left simple* if for all $s \in S: Ss = S$ (this means every element of S can be written in the form s's). Proposition 1 implies

PROPOSITION 2. (a) If S is left simple (or right simple, or a group) then

$$P[s] = 1$$
 for one $s \in S \Leftrightarrow P[s] = 1$ for every $s \in S$.

(b) If S has a left unit e (es=s for all s) then

$$P[e] = 1 \Leftrightarrow P[s] = 1$$
 for every $s \in S$.

Let S be a discrete semigroup with a left unit e and (S, P) an A-pair, further put $P' = \frac{1}{2}(P + \delta_e)$ (δ_e is the probability measure concentrated at e, i.e. $\delta_e(e) = 1$, $\delta_e(s) = 0$ for $e \neq s \in S$). Then P' is a probability measure on S and Supp $P' = \text{Supp } P \cup \{e\}$.

Proposition 3. $P[s]=1 \Rightarrow P'[s]=1$.

PROOF. e is a left unit, therefore $\delta_e * P = P$. So

$$P'^{(2n)}(s) \ge \frac{1}{2^{2n}} \sum_{k=1}^{2n} \frac{1}{2} {2n \choose k} P^{(k)}(s) \ge \frac{1}{4^n} \frac{1}{2} {2n \choose n} P^{(n)}(s)$$

and

$$1 \ge (P'^{(2n)}(s))^{1/2n} \ge \frac{1}{2} \left(\frac{1}{2}\right)^{1/2n} {2n \choose n}^{1/2n} (P^{(n)}(s))^{1/2n} = a_n (P^{(n)}(s))^{1/2n}.$$

Since $\lim_n a_n = 1$ we get P'[s] = 1.

Proposition 3 says that if (S, P) is an A-pair then so is (S, P') (and we have P'(e)>0).

THEOREM 1. Let S be a discrete semigroup with a left unit e and (S, P) an A-pair. Then

- (1) $P[e]=1 \Rightarrow \lim_{n\to\infty} (P'^{(n)}(s))^{1/n}=1$ for every $s\in S$,
- (2) $\lim_{n\to\infty} (P'^{(n)}(s))^{1/n} = 1 \Leftrightarrow \lim_{n\to\infty} (P'^{(n+1)}(s)/P'^{(n)}(s)) = 1$.

PROOF. Similar to the proof of Theorem 1 and Theorem 2 of [3].

3. The class of A-semigroups.

THEOREM 2. Let S be a finite semigroup and P a probability measure on S such that Supp P generates S. Then (S, P) is an A-pair.

PROOF. Let c be the cardinal number of S. Then for every $n=1, 2, \cdots$ there exists an element s_n in S with $P^{(n)}(s_n) \ge 1/c$. Because S is finite there is an s_0 in S which appears infinitely often in the sequence s_1, s_2, \cdots and so $P^{(n_k)}(s_0) \ge 1/c$ for some sequence $n_1 < n_2 < \cdots$ of natural numbers. Therefore $P[s_0] = 1$.

THEOREM 3. Let S be a discrete semigroup with left cancellation $(ss'=ss''\Rightarrow s'=s'')$ and a left unit e. If S is an A-semigroup then S is left amenable.

PROOF. By assumption there exists a probability measure P on S and an element $s \in S$ such that (1) Supp P generates S and (2) P[s]=1. By Proposition 3 we have P'[s]=1 ($P'=\frac{1}{2}(P+\delta_e)$).

Now let $x \in l_2(S)$; then $P' * x \in l_2(S)$ and $\|P' * x\|_2 \le \|P'\|_1 \|x\|_2 = \|x\|_2$. So we can consider P' * as an operator on $l_2(S)$ and we have for its norm $\|P' *\|_{2\to 2} \le 1$.

Further, $\delta_e \in l_2(S)$. Next,

$$\begin{split} P'(s) &= P'(s)\delta_e(e) \leq \left(\sum_{s \in S} \left(\sum_{s_1 s_2 = s} P'(s_1)\delta_e(s_2)\right)^2\right)^{1/2} = \|P' * \delta_e\|_2 \\ &\leq \sup_{\|x\|_2 = 1} \|P' * x\|_2 = \|P' * \|_{2 \to 2} \leq 1, \end{split}$$

and in the same way

$$P'^{(n)}(s) \leq ||P'^{(n)}*||_{2\to 2} \leq 1.$$

So $1=P'[s] \leq \limsup_n \|P'^{(n)} *\|_{2\to 2}^{1/n} = \text{spectral radius of } P' * \leq \|P' *\|_{2\to 2} \leq 1$ or $\|P' *\|_{2\to 2} = 1$; by the same argument $\|P'^{(k)} *\|_{2\to 2} = 1$ for $k=1, 2, \cdots$. But Supp P' generates S and so for every finite $E \subset S$ there exists a natural number k with $E \subset \text{Supp } P'^{(k)}$ and $e \in \text{Supp } P'^{(k)}$. Then [1] (Theorem 1, $(e) \Rightarrow (a)$) implies that S is left amenable.

REMARK 1. For S a group G and P a symmetric probability measure on G whose support generates G we have from the theorem of Kesten

and Proposition 2: G amenable $\Rightarrow P[g]=1$ for every $g \in G$. So for groups we lose nothing in considering only symmetric probability measures. If P is not symmetric this implication need no longer be true; consider for example the infinite cyclic group $G=\langle a \rangle$, generated by a. This group is commutative, therefore amenable. Let

$$P = \alpha \delta_a + (1 - \alpha) \delta_{a^{-1}} \qquad (0 < \alpha < 1, \alpha \neq \frac{1}{2}).$$

Then

$$P^{(n)} = \sum_{k=0}^{n} \binom{n}{k} \delta_{a^{2k-n}} \alpha^{k} (1-\alpha)^{n-k}$$

and

$$P^{(2n)}(e) = \binom{2n}{n} \alpha^n (1-\alpha)^n.$$

So

$$P[e] = \lim_{n \to \infty} {2n \choose n}^{1/2n} (\alpha(1-\alpha))^{1/2} = 2(\alpha(1-\alpha))^{1/2} < 1 \text{ for } \alpha \neq \frac{1}{2}$$

(and P[e]=P[g] for every $g \in G$ by Proposition 2).

REMARK 2. The statement of Theorem 3 is false for arbitrary semigroups, for there are finite semigroups (which are A-semigroups by Theorem 2) that are not left (or right) amenable.

REMARK 3. The converse of Theorem 3 is not true in general, for there are left amenable semigroups with left cancellation and a unit that are not A-semigroups.

Consider, for example, the infinite cyclic semigroup $S = \{e, a, a^2, \dots\}$, generated by e (unit) and a. S is abelian and therefore amenable. Let P be a probability measure on S such that Supp P generates S. This implies $0 < P(e) = \alpha < 1$ and so $P = \alpha \delta_e + (1 - \alpha)P_1$, where Supp $P_1 \subset \{a, a^2, \dots\} = S - \{e\}$.

Then Supp $P_1^{(n)} \subset \{a^n, a^{n+1}, \cdots\}$ and therefore

$$P^{(n)} = \sum_{k=0}^{n} \binom{n}{k} P_1^{(k)} \alpha^{n-k} (1-\alpha)^k.$$

This gives $P^{(n)}(e) = \alpha^n$ and $P[e] = \alpha < 1$.

For $l=1, 2, \cdots$ we find for n large enough

$$P^{(n)}(a^l) \leq \sum_{k=0}^l \binom{n}{k} P_1^{(k)}(a^l) \alpha^{n-k} (1-\alpha)^k$$

$$\leq \sum_{k=0}^l \binom{n}{k} \alpha^{n-k} (1-\alpha)^k \leq \alpha^n \binom{n}{l} \sum_{k=0}^l \left(\frac{1-\alpha}{\alpha}\right)^k$$

and therefore $P[a^i] \leq \alpha < 1$. So S is not an A-semigroup.

THEOREM 4. The homomorphic image of an A-semigroup is an A-semigroup.

PROOF. Let (S, P) be an A-pair with P[s]=1 $(s \in S)$. Let $\varphi: S \rightarrow S_1$ be a homomorphism onto the semigroup S_1 . Define the probability measure P_1 on S_1 by

$$P_1(s_1) = P(\varphi^{-1}(s_1)) = \sum_{s \in \varphi^{-1}(s_1)} P(s).$$

Then by induction

$$P_1^{(n)}(s_1) = \sum_{s_1's_1''=s_1} \sum_{s' \in \varphi^{-1}(s_1')} P(s') \sum_{s'' \in \varphi^{-1}(s_1'')} P^{(n-1)}(s'')$$

$$= \sum_{s's'' \in \varphi^{-1}(s_1)} P(s') P^{(n-1)}(s'') = \sum_{s \in \varphi^{-1}(s_1)} P^{(n)}(s),$$

and therefore $1 \ge P_1^{(n)}(s_1) \ge P^{(n)}(s)$ for $s \in \varphi^{-1}(s_1)$. Thus $P_1[s_1] = 1$ if P[s] = 1 (where $\varphi(s) = s_1$).

THEOREM 5. Let (S_1, P_1) be an A-pair, (S_2, P_2) be an A-pair such that for some $s_2 \in S_2$: $\lim_{n\to\infty} (P_2^{(n)}(s_2))^{1/n} = 1$. Then $(S_1 \times S_2, P_1 \times P_2)$ is an A-pair.

PROOF. Supp $P_1 \times P_2$ generates $S_1 \times S_2$ and

$$1 \ge (P_1 \times P_2)[(s_1, s_2)] \ge P_1[s_1] \lim (P_2^{(n)}(s_2))^{1/n} = P_1[s_1] = 1$$

for some $s_1 \in S_1$.

EXAMPLE 1. Let S be a countable right zero semigroup (ss'=s') for all $s, s' \in S$. If P is any probability measure on S whose support generates S, then Supp P=S and

$$P^{(n)}(s) = \sum_{s_2 = s_1, s_2 = s} P(s_1) P^{(n-1)}(s_2) = \sum_{s_1 \in S} P(s_1) P^{(n-1)}(s) = P(s).$$

Therefore $P[s] = \lim (P(s))^{1/n} = 1$, because P(s) > 0 for every $s \in S$; so we see that every countable right zero semigroup is an A-semigroup.

EXAMPLE 2. As in Remark 3 one can show that the semigroup $S = \{e, a, b, ab, \dots\}$, generated by two elements a and b, is not an A-semigroup.

REFERENCES

- 1. M. M. Day, Convolutions, means and spectra, Illinois J. Math. 8 (1964), 100-111. MR 28 #2447.
- 2. P. Gerl, Über die Anzahl der Darstellungen von Worten, Monatsh. Math. 75 (1971), 205-214.
 - 3. ——, Diskrete, mittelbare Gruppen, Monatsh. Math. (to appear).

532 PETER GERL

- 4. H. Kesten, Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336-354. MR 22 #253.
- 5. —, Full Banach mean values on countable groups, Math. Scand. 7 (1959), 146-156. MR 22 #2911.

DEPARTMENT OF MATHEMATICS, PAHLAVI UNIVERSITY, SHIRAZ, IRAN

Current address: Mathematisches Institut der Universität, Strudlhofgasse 4, A-1090 Wien, Austria