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PROBABILITY MEASURES ON SEMIGROUPS

PETER GERL

ABSTRACT. Let S be a discrete semigroup, P a probability
measure on S and s€ S with lim sup,(P'"(s))'»=1. We study
limit theorems for the convolution powers P of P implied by the
above property and further the class of all semigroups with this
property. Theorem 3 relates this class of semigroups to left amenable
semigroups.

1. Introduction. Let S be a discrete semigroup and P a probability
measure on S, that is a real valued function on S with P(s)=0 for all
se S and > ,g P(s)=1. Kesten ([4], [5]) characterized amenable groups
by means of the asymptotic behavior of convolution powers of symmetric
probability measures defined on the group. A more precise information
for the asymptotic behavior was obtained in [2] and [3] for symmetric
probability measures on a discrete amenable group. In what follows
we will derive similar theorems for probability measures on discrete
semigroups.

Let S be a discrete semigroup, P a probability measure on S. Then
Supp P={s/P(s)>0} denotes the support of P. To say Supp P generates S
means: S=|J,_, (Supp P)".

For probability measures P, Q on S define their convolution P » Q by

PxQ(s) = > P(s))Q(sy)

(the summation is to be extended over all representations of s as a product
of two elements s,, s, of S). P * Q is again a probability measure and
Supp P * Q=(Supp P) - (Supp Q). We often write PN =P, P(")=P % P»~1,

Kesten obtained the following characterization of discrete amenable
groups:

Let G be a discrete group with unit element e, P a symmetric probability
measure on G (P(g)=P(g™) for all g in G) such that G is generated by
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Supp P; then
G is amenable<=Ple] = lim sup(P‘™(e))'/" = 1.

n—* o

2. Limit theorems. Let S be a discrete semigroup; if there exists a
probability measure P on S with the properties

(1) Supp P generates S, and

(2) there exists an s € S with P[s]=lim sup,_,,(P™(s))*/"=1 then we
call S an A-semigroup or, if we want to specify P, (S, P) an A-pair.

Let (S, P) be an A-pair with P[s]=1 for some s € S. Let s’ € S; since
Supp P generates S there exists a natural number k& with P®(s")>0. Then

P(n+k)(ss/) = Z P(”’(sl)P("’(sz) > P(n)(s)P(k)(s/)

s182=ss’

and (k is fixed)

1 = P[ss'] = lim sup(P'"*¥(ss"))/(n+¥)
n

> lim sup(P™(s))V/" lim(P®(s' )/ = P[s] = 1.
Therefore we have " "
ProOPOSITION 1. P[s]=1=-P[ss'|=P[s's]=Pl[s'ss")=1 for all s', s" € S.

S is called left simple if for all s € .S:Ss=S (this means every element of
S can be written in the form s’s). Proposition 1 implies

ProposiTION 2. (a) If S is left simple (or right simple, or a group)
then
P[s]=1 foroneseS<>P[s]=1 foreveryseSs.

(b) If S has a left unit e (es=s for all s) then
Ple] =1<>P[s]=1 foreveryseS.

Let S be a discrete semigroup with a left unit e and (S, P) an 4-pair,
further put P'=4(P+9,) (J, is the probability measure concentrated
ate, i.e. 6,(e)=1, J,(s)=0 for e#s € S). Then P’ is a probability measure
on S and Supp P'=Supp P U{e}.

PRrOPOSITION 3. P[s]=1=-P'[s]=1.
PROOF. e is a left unit, therefore §, * P=P. So

2n
P,(zn)(s) > L. Z l(zn) P(k)(s) g 4%' %(2:) P(n')(s)

d 22”k=1 2 k
an
1/2n 1/2n
1 g (Pr(Zn)(s))1/2n g %(%) (2”) (P(n)(s))1/2n — a,,(P‘”’(s))"Z”.
n

Since lim, a,=1 we get P'[s]=1.
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Proposition 3 says that if (S, P) is an A-pair then so is (S, P’) (and we
have P’'(e)>0).

THEOREM 1. Let S be a discrete semigroup with a left unit e and (S, P)
an A-pair. Then

(1) Ple]=1=>lim,_, (P (s))}/»=1 for every s € S,

() lim,_, (P (s)V/r=1<>lim,_,,(P"™D(s)[P"™) (s))=1.

Proor. Similar to the proof of Theorem 1 and Theorem 2 of [3].
3. The class of A-semigroups.

THEOREM 2. Let S be a finite semigroup and P a probability measure
on S such that Supp P generates S. Then (S, P) is an A-pair.

ProOF. Let c be the cardinal number of S. Then for every n=1, 2, - - -
there exists an element s, in S with P (s,)=1/c. Because S is finite
there is an s, in S which appears infinitely often in the sequence s,, s,, * - *
and so P (sg)=1/c for some sequence n, <n,<- - - of natural numbers.
Therefore P[s,]=1.

THEOREM 3. Let S be a discrete semigroup with left cancellation
(ss'=ss"=>s'=s") and a left unit e. If S is an A-semigroup then S is left
amenable.

Proor. By assumption there exists a probability measure P on S
and an element s € S such that (1) Supp P generates S and (2) P[s]=1.
By Proposition 3 we have P'[s]=1 (P'=}(P+34,)).

Now let x € [,(S); then P’ x x € [,(S) and ||P’ * x|, =< |||l I xll.=x]l2-
So we can consider P’ * as an operator on /,(S) and we have for its norm
[P *[loe =1.

Further, 6§, € I;(S). Next,

PO = PO S (3 (

seS

= sup [P xxlly =[P #|znp = 1,
[l 2=1

2\1/2
S Pes)) = 1P+,

S182=8$

and in the same way
P™(s) = [P llpe S 1.

So 1=P'[s]<lim sup,||P'™ x||3/",=spectral radius of P’ * <||P’ *|l,,=<1
or ||P’ #||,_,=1; by the same argument |[P'® x|, ,=1 for k=1,2,--- .
But Supp P’ generates S and so for every finite E < S there exists a natural
number k with E<Supp P'®) and e € Supp P'®. Then [1] (Theorem 1,
(e)=-(a)) implies that S is left amenable.

RemMark 1. For S a group G and P a symmetric probability measure

on G whose support generates G we have from the theorem of Kesten
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and Proposition 2: G amenable =-P[g]=1 for every g € G. So for groups
we lose nothing in considering only symmetric probability measures. If
P is not symmetric this implication need no longer be true; consider for
example the infinite cyclic group G=(a), generated by a. This group is
commutative, therefore amenable. Let

P =ad, + (1 — a)d, O<a<l,az}).

Then
p™ =kio (:) 8,2e-nak(1 — o)™ %
and
Pem(e) = (2n)a”(l — @y,
So "

1/2n
Ple] =lim (2n) (@1 — )2 =2(a(1 —a))'2 <1 fora }
n—wo \ N

(and P[e]=P[g] for every g € G by Proposition 2).

REMARK 2. The statement of Theorem 3 is false for arbitrary semi-
groups, for there are finite semigroups (which are A-semigroups by
Theorem 2) that are not left (or right) amenable.

REMARK 3. The converse of Theorem 3 is not true in general, for there
are left amenable semigroups with left cancellation and a unit that are
not A-semigroups.

“onsider, for example, the infinite cyclic semigroup S={e, a, a%, - - - },
generated by e (unit) and a. S is abelian and therefore amenable. Let P
be a probability measure on S such that Supp P generates S. This implies
0<P(e)=a<1 and so P=ad,+ (1 —a)P,, where Supp P,<{a,a®, ‘- }=
S—{e}.

Then Supp P{"’ = {a", a**1, - - - } and therefore

n

P — 2 (Z) Pik)an—k(] _ a)k.

k=0
This gives P (e)=a" and Ple]=a<1.
For /=1, 2, - - - we find for n large enough

(n)g L ln(k)l'n—k_k
P (a)égo(k)m (@)1 — o)

5 (o -orse() (57

£=0 a

and therefore Pla']<a<1. So S is not an A-semigroup.
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THEOREM 4. The homomorphic image of an A-semigroup is an A-
semigroup.

PrOOF. Let (S, P) be an A-pair with P[s]=1 (s€S). Let ¢:5—S;
be a homomorphism onto the semigroup S;. Define the probability
measure P, on S; by

Py(sy) = P(‘P—l(sl)) = Z P(s).
see Ms1)

Then by induction
PPsy= > > P() 2 P

s1's17=s1 €@ Ls1) s"ee 1s1”)
— Z P(SI)P(n—l)(sn) — z P(")(s),

rerem— 1 —1

s's"e@ " (s1) sep (s1)

and therefore 1=P{™(s;)=P™(s) for se ¢~(s;). Thus Pi[s;]=1 if
P[s]=1 (where ¢(s)=s,).

THEOREM 5. Let (Sy, P,) be an A-pair, (S;, P;) be an A-pair such that
for some sy € Sy:lim, .o (Pi"(sp))/m=1. Then (SyXS,, PyXPy) is an
A-pair.

PROOF. Supp P, X P, generates S; X S, and
1 Z (Py X Py)l(sy, 521 = Py[s,]lim(P§”(sp))''™ = Py[s,] = 1

for some s, € S,.

ExAMPLE 1. Let S be a countable right zero semigroup (ss'=s" for
all s, s" € S). If P is any probability measure on .S whose support generates
S, then Supp P=S and

PR = > PP (sp) = 3 P(s)P"(s) = P(s).
§2=8182=$ s1€8
Therefore P[s}=lim(P(s))'/*=1, because P(s)>0 for every s € S; so we
see that every countable right zero semigroup is an A-semigroup.
ExAMPLE 2. As in Remark 3 one can show that the semigroup
S={e, a, b,ab, - -}, generated by two elements a and b, is not an
A-semigroup.
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