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PHYSICAL  STATES  ON  A   C*-ALGEBRA

CHARLES  A.   AKEMANN1   AND  STUART   M.   NEWBERGER

Abstract. When a locally compact HausdorfT space X is

totally disconnected, any doubly generated subalgebra of (real)

C„(X) is singly generated.

We have noted that the proof of Lemma 9 of [1] is incomplete. The gap

seems to be quite difficult to fill, so Theorem 1 of [1] must be considered as

open. We give herein a simple argument which fills that gap for a large

class of C*-algebras.

Theorem. Let X be a totally disconnected locally compact Hausdorjf

space and C0(X) the algebra of all real-valued continuous functions on X

which vanish at infinity. For anyf, g e C0(X) there exists h e C0(X) such that

f and g lie in the closed (sup norm) algebra generated by h. (Hence any

quasi-linear [I] functional on C0(X) is linear.)

Proof. Since X is totally disconnected, the Stone-Weierstrass theorem

(or a direct construction) shows that the set of all finite linear combina-

tions of idempotents is dense in C0(X). For each h— 1,2, • • •, there exists

a finite family {p"Yi=i of idempotents and coefficients {a"} such that

\\Iki«?P?-f\\<ll».
Consequently (J«=i {/>"fei 's a countable family, and/ lies in the closed

algebra generated by it. Since a similar family exists for g, we may take

their union and get a countable family {qn}n=i of idempotents such that

both /and g lie in the closed subalgebra generated by it. By [2, pp. 293-

294] the closed subalgebra generated by {q„Yn=i is generated by a single

element /;, so we are done.
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