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METRIC INEQUALITIES AND CONVEXITY

DOROTHY   WOLFE

Abstract. Conditions that a given point of a normed linear

space is (or is not) a convex combination of« fixed points are given

in terms of the metric. The point is said to be metrically dependent

if the conditions hold.

The principal aim of this paper is to solve the following problem: Given

q,px, ■ • ■ ,pn, points in a real normed linear space, what is a necessary

and sufficient condition in terms of the metric that q lie inside the convex

cover of the other points? The solution is an immediate corollary of

Theorem 1, which generalizes a theorem of R. G. Bilyeu.

Theorem 1. Ifq, px, ■ ■ ■ , pn are members of a real normed linear space

B with metric d associated with the norm and if there exist a¿ (i= 1, • ■ • , n)

such that a>f), 2Li *<■» 1 > and for each w in the space

n

d(w, q) û 2 aid(w> Pi)
¿=i

thenq=2*-iaiPi-

Proof. We shall call {aj satisfying the conditions of the theorem a set

of weights. There is no loss of generality in letting 2 aiPi = ®- (All sum-

mations are from 1 to n.) Also, since we look only at the finite dimensional

subspace containing the given points, we can consider B finite dimensional.

The proof follows from the fact that for a set of z dense on the boundary

of the unit sphere 5

(1) lim 2 atd(kz, p,) - d(kz, 0) = 0.
k-* co

This limit holds for all z such that for each pi

(2) lim [d(kz, />,) + d(kz, -Pl) - 2d(kz, 0)] = 0,
k-*ao

since the weighted sum over /of the left side of (2) is (1) plus a similar sum

involving —p¿, both nonnegative.
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The limit (2) is obviously equivalent to the existence of the Gateaux

differential,

d(z, hp) - d(z, 0)
hm--—--,
h->0 h

a limit which exists wherever S is smooth (that is, wherever z lies on only

one support hyperplane). 5 is smooth, except possibly at a countable set

of points on its boundary [3, pp. 132-134].

To prove the theorem, given any q^O, we must produce w such that

d(w, q)~>2aid(yv,pA. Let d(q, 0) = e. If S is smooth at —qje, setz=—q¡e.

In any case, there exists some smooth point z on the boundary of S closer

to —ale than 1/2. Then for k sufficiently large

2 atd(Pi, kz) - d(kz, 0) < e\2
and

2 M(Pii kz) < d(kz, 0) + e/2

= d(kz, -ez) - d(-ez, 0) + e/2

^ d(kz, q) + d(-ez, q) — d(—ez, 0) + e/2

= d(kz, q) + ed(z, —qje) — ed(z, 0) + e/2

< d(kz, q).

This kz is the w we needed.

If q= 2 OiPi for a set of weights {aA, we say that^ is convexly dependent

on {px, ■ ■ ■ , pn}. We may add another definition: q is metrically dependent

on {/?!, • • • ,pn} if there exists a set of weights {a¡} such that for all w in

the space, d(w, q)^ 2 aid(w, pu-
Then, since the converse of Theorem 1 is elementary, we can state as a

corollary: In a normed linear space, q is convexly dependent on {px,- ■ ■ ,pn}

if and only if it is metrically dependent on the same set.

If there exists a set of weights such that the weighted average of distances

from a given point q to n fixed points is greater than the average with the

same weights from every one of the fixed points, then q is not convexly

dependent on the n points. This is the idea behind the following two

theorems, which use only the metric structure, not the linearity of the

space.

Theorem 2. Given n+1 points q, px, ■ ■ ■ , pn in a metric space, if there

exists a set of weights {/3J such that

2 btd(q, PA > 2 i>id(pi, pA   for each j = 1, • ■ • , n,
i l

then q is not metrically dependent on {ply • * ■ , pn}.
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Proof. Given any set of weights {b¡}, let k be the value ofj for which

2,- btd(pt, p¡) is a maximum over /= 1, ■ • • , n. Then if, contrary to the

conclusion of the theorem, q is metrically dependent, there exists a set of

weights {a¡\ such that d(w, q)^YLi o¡d(w, p}) for each w (and, in particular,

for w=pt, l</^n).

But

2 bAPr, pk) = 2 a>2 mí?,-, ft)
¿ i i

= 2 aí 2 b^ft> ft)

= 2 fe¿ 2 flAft' ft)
¿ 3

^ 2 MG\, o)

contradicting the hypothesis of the theorem.

A somewhat weaker converse requires a condition stronger than the

metric dependence inequality for some arbitrary point of the space. The

inequality must hold for at least one of the given points p¡.

Theorem 3. In a metric space containingq, pu • • •, pn, if, for every set of

weights {a,},

d(Pj, q) > 2 aid(Pj, Pi)   for some pf
i

then there exists a set of weights {b¿} such that

2 MO?, PÙ > 2 M(P¿» Pi)   f°r each j.
i i

Proof.    Consider the system of« linear inequalities in xx, ■ ■ ■ , xn

x2d(p2, px) + ■ ■ ■ + xnd(pn, px) ;> d(q, px),

(3)   xxd(px, p2) -\- + xnd(pn, p2) ^ d(q,p2),

Xid(px,pn) + • • ■ + xn_xd(pn_x, pn) ^ d(q,pn).

It is a standard problem in linear programming to find a nonnegative

set {x¿} such that J, xt is a minimum. By the duality theorem [2, p. 73]

this set exists if and only if there exists a nonnegative set {y¡} such that

y2d(px,p2) -|- + ynd(px,pn) ^ 1

yid(p2,Pi) + ■•■ + y„d(p2,pn) ^ 1

yxd(pn, px) + • ■■ + yn~id(p„, pn_x) < 1.

Furthermore, min[x1+- ■ ■ +xn] = max[yxd(q, px) + - ■ -+ynd(q, pn)].
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Since for every set of weights (i.e., .v,=a¿, 2 a¿=U. f°r at least onep}

the inequality (3) is not satisfied, the minimum of 2*¿>1; hence so is

max 2y¿d(q,pA. Fixing jj, • • • ,yn at the values for which this maximum

is reached, for every k between 1 and n

yid(pk, Pi) + • ■ • + ynd(pk, Pn) ^ 1 < yid(q, Pi) + ■ ■ ■ + ynd(q, pn)-

We divide the entire inequality by 2 y¡- Thus we get a set of weights

bj=yjl1yi and for each fixed k

t>id(pk, px) + ■ ■ • + bnd(pk, pn) < bxd(q, px) + ■ ■ ■ + bnd(q, pn).
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