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ON CHARACTERISTIC CLASSES OF GROUPS
AND BUNDLES OF K(Yl, 1)'S

R.  O.   HILL,  JR.1

Abstract. If F->-E-+B is a fibrationwith F=K(G, 1), G Abelian,

and B=K(ll, 1), then it is shown that the action and characteristic

class of the fibration correspond to those of the induced group

extension.

1. Let F and B be spaces of the homotopy type of connected CW

complexes and which are Eilenberg-Mac Lane spaces of type K(G, 1) and

K(l~l, 1), respectively, where G is Abelian. Given any fibration F-VF^>Z?,

it is natural to ask: what is the fundamental group of F? The only non-

trivial part of the homotopy sequence for p is

0 _+ „¿F) ±* irx(E) ̂ > MB) —* 1.

Thus 7T,(F) is a group extension of trx(F) by nx(B) and F is a K(ttx(E), 1)).

Since G=trx(F) is Abelian, this extension naturally induces a^Z^-module

structure on G, cp:TTx(B)-^Aut(G). See [10, p. 108]. The (equivalence

class of this) extension is completely determined by a certain 2-dimensional

group cohomology characteristic class c e ZF¿(n ; G).

On the other hand, in any fibration, "dragging" the fiber over a loop in

the base space induces a homotopy equivalence on the fiber. In this way,

the fibration p (geometrically) induces an action <p' of trx(B) on ttx(F) and

the characteristic class of p (i.e. the first obstruction to a cross-section) is a

2-dimensional cohomology class k e H2,. (K(Yl, 1 ) ; {G}) (where this denotes

cohomology with local coefficients twisted by q>').

If <p=q>', then Hl(Yl; G) and ZZ^(Zi"(II, 1); {G}) are naturally isomor-

phic, and it is natural to conjecture that c corresponds to k. Indeed, this

is so and in fact we will prove:

Theorem 1.    Let F and B be as above and F—>E—>B be a fibration.

(a) The two actions <p and q>' ofTtx(B) on rrx(F) are the same.

(b) If c and k are as above, then <t>(c)=k, where <J>:ZZ|(II; (?)—>-

H*(K(ll, 1); {G}) is the natural isomorphism.

Received by the editors November 22, 1972 and, in revised form, January 16, 1973.

AMS (MOS) subject classifications (1970). Primary 55F15; Secondary 55B25.

Key words and phrases. Fibrations, group extensions, characteristic classes.

1 This work was partially supported by NSF Grant GP-19462.

© American Mathematical Society 1973

597



598 R.   O.   HILL,   JR. [October

(c) This class k is also the characteristic class for the map that pulls the

fibration back from the universal example.

A version of this theorem was proven in the special case of principal

bundles (i.e., all actions are trivial) by Massey in [2, pp. 37-41]. He

showed there was some isomorphism which preserves the characteristic

classes, but he left open if it was the canonical one. The above, of course,

shows it was. See also Conner and Raymond [3, §8] for the essence of

another approach.

In §§2 and 3, we set up the algebra and the topology we need. Theorem

1(a) and (b) is proven in §4 and 1(c) is outlined in §5. In §6 we give an

application. I would like to thank Frank Nussbaum for our many helpful

discussions.

2. In this section we summarize the theory of group extensions. See

Mac Lane [10, Chapter IV] for details.

If G, H, and II are groups, an extension of G by IT is a short exact

sequence E:\—+G?-+H^>-X\~A. If G is Abelian, then E naturally induces

an action of II on G, <p:Il~>Aut G, by i(cp(k)g)—hgh~l, where geG,

he H, keTl and j(h) = k.
Suppose hereafter that G is Abelian, and let qo be a fixed action of n

on G. The set of all equivalence classes of extensions of G by n which

induce <p forms an Abelian group under Baer sum which is naturally

isomorphic to H2(U; G). See [10, Chapter IV, 4.1 and 5.2]. We need to

know this isomorphism explicitly, so we briefly describe the bar con-

struction.

For «=0, let Bn be the free Abelian group generated by all symbols of

the form x9[Xi\' • •]#„), where x¡eU, x^\ if /=1, called the non-

homogeneous generators. Set .*o[*il' ' "l*n]=0 if some x(=l for /|tl. The

Z(IT) (=group ring) module structure is z(x0[xx\- ■ ■\xn])=zx0[xx\- ■ -\xn].

For «g: 1, define dn:Bn->-Bn_x by

dnX0[xx\ • ■ ■ \xn] = x0xx[x2\ ■ ■ ■ \xn] + (-l)"x0[xi| ■ ■ • \xn_x]

n-l

+ 2X°[-Xll ' ' ' \X'X>+l\ ' ' ' i*«]-
i=l

define d*n:HomZ{n)(Bn_x, G)^Homzau(Bn, G), and define h;(K; G) =

ker 3*+1/im d*.

In the extension E-.O-^G^H^-Il^-l (which induces 99), for each

x eU, pick v(x) e H such thatjv(x)=x and v(\)=l. Possibly v(x)v(y)¿¿

v(xy), but for every x,y e ÎI, there is an f(x,y) eG such that if(x,y) =

v(x)v(y)v(xy)~1. Define CE:B2-^G by CE(x0[xx\x2]) = c(x(¡) ■ f(xx, x2).
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Proposition 2.1. The cochain CE is a cocycle and the mapping defined by

E^-CE is the natural isomorphism between the group of extensions inducing

<pandHl(Xl;G).

Proof.   This is a direct consequence of Mac Lane [10, pp. 112-114].

3. Let W— W(U) be the standard free acyclic semisimplicial complex

corresponding to the group II. Its «-simplices are ordered (« + l)-tuples

of elements of n, [ae, ■ ■ ■ , an]. It has face and degeneracy operators

dAa0, •'•.«•!- k» ''• * i a<a<+i> ' * '" > anl       0 ^ / ^ n - 1,

ï<I«o. ■".«»] = [a0,   ••, Of, l,ai+ù • • ■ , an],       0 < i < n,

and II acts on W by a[a„, ■ • ■ , an]=[aa0, ax, ■ ■ ■ , a„]. (Note that

[1, ax, ■ ■ ■ , an] with no a2=l is not degenerate.)

Let | W\ be Milnor's geometric realization [11], which is a CW complex

with an «-cell for each nondegenerate «-simplex of W. Let C* = C*(\W\)

be its CW chains. Denote the «-cells by (a0, • • • , a„) and the corresponding

generators of Cn by ((a0, ■ ■ ■ , an)), at e U, no a¡= 1 for />0. By the real-

ization and the definitions of 9,-, 9:C„->C„_, is given by

71-1

d((a0, ■ ■ ■, an)) = 2 (-OXXao. •   •. «A+i»- - ' - <*„))
(3-1) ,=o

+ (-l)"«flo, ■••,fl»-i».

The action of If on W induces a free cellular action of II on | W\ and a

corresponding action on C*. As is well known, | W\ is acyclic, K=\ W\/Yl

is a K(U, 1), and q:\ W\—-K, the quotient map, is the universal cover.

Since the action of II on | W\ is cellular, q induces a CW structure on K.

To each equivalence class {{aa0, ax, ■ • ■ , an) \a e II} corresponds an «-cell

of K, denoted by (ax\- • -\an), and a generator of the CW chains of K,

C*(K), ((ax\- ■ -\an)), l#aien.Then9:|fP|->-Z<:isgiven by q(a0, • ■ ■ , a„)

= (ax\- ■ -\an) and similarly for q*:C*(\ W\)^>-C*(K). We compute 9 in

C*(K) using q* and (3.1) and get

3((flil • • • I««)) = ((«•! ■ • • K)) + (-i)"((«il • • • K))
n-l

+ 2((ail ' ' ' lflA+il ' ' ' K))-

(Compare with Eilenberg and Mac Lane [6, §1.3].)

We are now able to give a very complete geometric description of (at

least) the 2-skeleton Km of K.
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Lemma 3.2.    (a) K has one 0-cell (1).

(b) // has one (oriented) l-cell (x) for each 1 ¿¿x e II, and of course the

attaching maps are trivial.

(c) // has one (oriented) 2-cell (x\y) for each x,yeîl, x^l^y. The

attaching map is algebraically given by ((y)) — ((xy)) + ((x)), so that the

2-cell (x\y) is attached with the relation (x) + (y) — (xy) = 1.

Proof.    This is immediate from the above construction.

Lemma 3.3. We can take the isomorphism Y\-^:ttx(K(Y\, 1), *) (where

* =(1)) as being induced by taking the cell (x) to represent x e II.

This is an easy exercise.

Lemma 3.4.    Let B^=B^,(U) be the bar resolution described in §2.

(a) There is an isomorphism B*^C*(\ W\).

(b) This isomorphism induces the natural isomorphism í> : H*(f\ ; G)->

H*(K(U, 1); {G})for the case the K(U, 1) is K.

Proof, (a) Define Bn-+Cn(\W\) by sending the nonhomogeneous

generator x0[*il' ' ~\x„] to the generator ((x0, xx, ■ • • , xn)). The con-

structions have been set up so that it is trivial to check that this induces

an isomorphism of differential graded Z-modules.

(b) The usual isomorphism (see [10, Chapter IV, 11] or [3]) is obtained

by observing that the total singular complex of \K(U, 1)|, its universal

cover, can be interpreted as a free Z(I1) (=group ring) resolution of Z, so

it is naturally chain equivalent to the bar resolution. Consequently the

cohomology of the bar resolution, which is H*(U; G), is isomorphic to

H*(\K(U, 1)|; G), the equivariant cohomology ,which, in turn, is naturally

isomorphic to H*(K(U, 1); {G}) by Eilenberg [5]. For this K(TL,l),

| ry(ri)| is its universal cover, so the result follows easily using the above

isomorphism and the usual isomorphism between cellular and singular

cohomologies. Indeed, we could even follow this on the chain level using

the chain equivalence k defined by Eilenberg and Mac Lane in [6, §7].

Corollary 3.5. ///: ß2(II)—>-G is an (equivariant) 2-cocycle, then under

the above isomorphisms, the corresponding cellular 2-cocycle (f) e

C2(\ W(U)\ ; G) is given by (f)((a0, ax, a2))=f(a0[ax\a2]) and the corre-

sponding 2-cocycle {/} e C2V(K; {G}) is given by {/}(c,|c2)=/(l [cx\c2]).

Proof.    This is immediate from the above.

4. We are now ready to prove Theorem 1.

Part (a). This is a corollary of a stronger theorem proven in [9]. For

the reader's convenience, an independent proof of this fact is included

here.
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Let x:I~-+B represent [a] e ttx(B, b0) and A:IxF^*E cover a-1. Let

p1:/—>-F represent [ß] e trx(F, e0), let y:(I,0, l)-*(F, e0, ex), where ex =

A(l,e0) and let t,:I^F be given by t,(t)=A(\, ß(t)). By definition of the

geometric action of irx(B, b0) on trx(F, e0), cp', y(i)y~x represents (q>' [a])[/3].

Let a=A\lx e0, which is the path in E (from e0 to ex) that the basepoint

follows under A. Note that a covers a-1, so that (iy)o~x is a loop in E based

at e0 which covers wa~a (where w is the constant loop at b0). By definition

of the algebraic action, tp, [(iy)o~1]ß[(iy)o~1Yl represents i*(<p[<x-][ß])-

But it is straightforward to use A(\ xß):Ix!-^>-E to show

/(0~o-^o-:(/,/)->(F,eo).

Therefore

i[ytt)y-i] ~ [(iy)o^]ß[a(iyrx]
so we are done.

Part (b). Suppose K(G, \)Ue^*K(U, 1) is a fibration. Let G denote

ttx(K(G, 1), e0), assume K(H, 1) is the K in §3 (the case of an arbitrary

K(J\, 1) follows from this using homotopy equivalences), and let cp be the

induced action of ttx(K, b0) on G.

We first represent the algebraic characteristic class. For each x e

trx(K, b0), pick u(x) e trx(E, e0) such that pif(u(x))=x, choosing w(l)=l.

Then p* [u(x)u(y)u(xy)~1x = 1, so for every x,y e trx(K, b0), there is a

f(x,y) eG such that /*/(*,y) = u(x)u(y)u(xy)~1. By 2.1, c:B2(wx(K, b0))-*

G given by c(z[x\y]) = q>(z)f(x, y) is a 2-cocycle representing the character-

istic class of the extension.

To represent the geometric characteristic class, we must choose specific

representatives. By 3.3, each x eTrx(K, b0) is represented by the cell (x).

For each xerrx(K, b0), pick a loop oixeu(x)etrx(E, e0), picking the constant

loop for ax. Thenpax^(x). Construct a map s from the 1-skeleton of K to

E by letting s on the loop (x) be the loop olx. Thus 5 is a homotopy cross-

section, and we ask : can s be extended to the 2-skeleton ? We examine this

using classical obstruction theory (see Steenrod [14]). By 3.2, K has one

2-cell (x\y)for each x,y e U, x^l^y, so oriented that d(x\y) = (x) + (y) —

(xy) (where this is path composition). Therefore p^.(a.x-\-oLv—xxy) is null-

homotopic in B, so there is a \oory g(x,y) in K(G, 1) such that i*g(x, y) —

a.x+a.v—axv. Since im is 1-1, the loop g(x,y) represents f(x,y), by con-

struction. By the definition of the obstruction, therefore, the homo-

morphism k:C2(K)^>-G given by ((x\y))^-f(x,y) is the cocycle which

represents the geometric characteristic class in H\(K; {G}) of this fibration.

But, using 3.5, a simple comparison now shows that k is the image of c,

above, under the canonical isomorphism.

5. Just as K(G,n+\) and a universal class v e Hn+l(K(G, n+l); G),

and the loop-path fibration classify cohomology and principal fibrations,
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there is a space L = LAat 0(G, «+1) and a universal class V e H^+1(L; {G})

and a fibration K(G, «)~>-ZC(Aut G, 1)-VL which classify twisted cohom-

ology and twisted fibrations. See [8], [12], [13], [9] for details. L is con-

structed from K(G, «+1); q, from the loop-path fibration; and V, from v.

By those constructions, V is the obstruction for a cross-section to q, since

v is the obstruction for the loop-path fibration. For completeness we

observe:

Proposition 5.1. IfK(G, l)^K(E, l)^K(U, l)=K is the pull-back ofq
by a map f:K(Yl, l)—>-LAuta(G,2) such that (p=f^,:-ir1(K)~>-tr1(L), then

f*(V)e H2p(K(U, 1); {G}) it also the obstruction k.

Proof.    Obstructions are preserved under pull-backs.

6. Let B be a compact, connected 2-manifold which is not the 2-sphere

or the real projective plane, so that B is a K(ttx(B, *), 1) and its Euler

characteristic %B is ^0. If F—>-F—>-Z? is a fibration with Fa K(G, 1) it may

then be possible to use Theorem 1 to give a purely algebraic description of

trx(E). As illustration, let Sl^>-E^-B be the bundle of unit tangent vectors

and let <p:ttx(B, *)^-Aut(7r1(5'1, *)^Z) be the action which is naturally

induced by p (which of course is trivial iff F is orientable). Then ti\(B, {Z})

^Z with the fundamental cocycle p as generator, and %Bp is the char-

acteristic class for the bundle p (see Steenrod [14, pp. 200, 201] and

Aleksandroff and Hopf [1, pp. 548-552]).
A straightforward application of Theorem 1 now gives:

Theorem 6.1. If B is as above and Sl^*E^+B is the bundle of unit

tangent vectors to B and <p is the action oftrx(B, *) on Trx(Sl) induced by p,

then

0 —>- Z —> ttx(E) -^ irx(E) —► 1

is the group determined by %Bu e H^tt^B); Z)^Z, where u is the image of

the fundamental cocycle under the natural isomorphism <J>.

Up to a factor of ± 1, this was proven by Massey for the orientable case

in [2, Theorem 3].
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