SOME PATHOLOGY INVOLVING PSEUDO I-GROUPS AS GROUPS OF DIVISIBILITY

JORGE MARTINEZ

ABSTRACT. In a partially ordered abelian group G, two elements a and b are pseudo-disjoint if a, $b \ge 0$ and either one is zero, or both are strictly positive and each o-ideal which is maximal with respect to not containing a contains b, and vice versa. G is a pseudo lattice-group if every element of G can be written as a difference of pseudo-disjoint elements.

We prove the following theorem: suppose G is an abelian pseudo lattice-group; if there is an x>0 and a finite set of pairwise pseudo-disjoint elements x_1, x_2, \dots, x_k all of which exceed x, and in addition this set is maximal with respect to the above properties, then G is not a group of divisibility.

The main consequence of this result is that every so-called "v-group" $V(\Lambda, R_{\lambda})$ for a given partially ordered set Λ , and where R_{λ} is a subgroup of the additive reals in their usual order, is a group of divisibility only if Λ is a root system, and hence $V(\Lambda, R_{\lambda})$ is a lattice-ordered group. We do give examples of pseudo lattice-groups which are not lattice-groups, and yet are groups of divisibility.

Finally, we compute for each integral domain D whose group of divisibility is a lattice-group, the group of divisibility of the polynomial ring D[x] in one variable.

1. **Preliminaries**. All groups in this paper are abelian, and in additive notation unless otherwise indicated. An integral domain here shall be a commutative ring with identity and no zero divisors. If D is an integral domain and K is its quotient field, then the group of divisibility of D is the multiplicative group of nonzero elements of K modulo the group U(D) of units of D; in symbols $G(D) \simeq K^* / U(D)$. This group can be given a directed partial order by setting $xU(D) \leq yU(D)$ if $yx^{-1} \in D$. A (directed) p.o. group G is called a group of divisibility if there is an integral domain D such that $G \simeq G(D)$. We can also view this concept in terms of semi-valuations: let K be a field, G be a directed p.o. group, and $v: K^* \rightarrow G$

Presented to the Society, June 27, 1972 under the title Some pathology in connection with groups of divisibility; received by the editors August 28, 1972.

AMS (MOS) subject classifications (1970). Primary 06A60, 13G05, 13H99, 13F20. Key words and phrases. Group of divisibility, semivaluation, pseudo-disjointness, pseudo l-group, v-group $V(\Lambda, R_1)$, primitive polynomial.

be a mapping onto G satisfying

- (i) v(xy) = v(x) + v(y), for all $x, y \in K^*$;
- (ii) v(-1)=0;
- (iii) $v(x+y) \ge g$ if v(x), $v(y) \ge g$, with $x, y \in K^*$ and $g \in G$.

Such a mapping is called a *semivaluation*. Let $D = \{x \in K^* | v(x) \ge 0\}$; then D is a subring of K, K is its quotient field and $G \simeq G(D)$. Conversely, if D is an integral domain and K is its quotient field, then the canonical mapping $K^* \rightarrow G(D)$ is a semivaluation (see [5, p. 8]; also [9, p. 1148]).

Consequently, G is a group of divisibility if and only if there is a semi-valuation onto G.

If G is a totally ordered group (abbreviation o-group), the map v is called a *valuation*, and Krull [6, p. 164] demonstrated that every o-group is a group of divisibility. Jaffard [4, p. 264] then showed that all lattice-groups (abbreviation l-groups) are groups of divisibility.

In a p.o. group a directed, convex subgroup is called an o-ideal. Suppose G is a p.o. group and $0 \le a, b \in G$; a and b are pseudo-disjoint if either is zero, or both are strictly positive, and every o-ideal which is maximal with respect to not containing a contains b, and vice versa. A pseudo lattice-group (abbreviation pseudo l-group) is a p.o. group in which every element can be written as the difference of two pseudo-disjoint elements. For the basic material concerning pseudo l-groups we refer the reader to [1] and [3]. Conrad shows in [1] that in a pseudo l-group G, $0 \le a$, $b \in G$ are pseudo-disjoint if and only if $c \le a$, b implies that $nc \le a$, b for each positive integer a.

For a given partially ordered set Λ , and each $\lambda \in \Lambda$, let R_{λ} be a subgroup of the additive real numbers equipped with the usual order. Form $V(\Lambda, R_{\lambda})$: the subgroup of the cartesian product of the R_{λ} over Λ consisting of the "vectors" $v = (\cdots, v_{\lambda}, \cdots)$ whose supports have no infinite ascending chains. $V(\Lambda, R_{\lambda})$ becomes a p.o. group by setting $0 < v = (\cdots, v, \cdots)$ if $v_{\lambda} > 0$ for each maximal component λ of the support of v. Then $V(\Lambda, R_{\lambda})$ is a pseudo l-group (see Theorem 4.8 in [1]), and every pseudo l-group may be embedded in some $V(\Lambda, R_{\lambda})$ so as to preserve pseudo-disjointness (see 4.11 in [1]). It is well known that $V(\Lambda, R_{\lambda})$ is an l-group if and only if Λ is a root system: $\{\lambda \in \Lambda | \lambda \ge \lambda_0\}$ is a chain for each $\lambda_0 \in \Lambda$. Finally, two elements 0 < v, $w \in V(\Lambda, R_{\lambda})$ are pseudo-disjoint if and only if no maximal component of the support of v is comparable to one in the support of w [1, p. 214].

2. The main theorem. We state our main result at the outset.

THEOREM A. Suppose G is a pseudo l-group, and there is an element $0 < x \in G$ and a set x_1, x_2, \dots, x_k of pairwise pseudo-disjoint elements all of which exceed x, and suppose further that this set is maximal with respect to the above properties. Then G is not a group of divisibility.

The proof depends on two lemmas, one rather interesting in its own right, the other rather technical.

LEMMA 1. Suppose G is a pseudo l-group, and v is a semivaluation from a field K upon G. If $0 < a, b \in G$ are pseudo-disjoint and 0 < c < a, b, then there is an element $0 < g \in G$, pseudo-disjoint to a and b, with c < g.

PROOF. Let v(x)=a, v(y)=b and g=v(x+y). If $c \le a$, g then $c \le v(-x)$, so that $b=v(y)=v(x+y-x)\ge c$. But a and b are pseudo-disjoint and hence $nc \le a$, b, for any positive integer n. Again using one of the defining properties of semivaluations $nc \le g$. Conclusion: a and g are pseudo-disjoint; likewise b and g are pseudo-disjoint. It is clear that if c < a, b then c < g; in particular g > 0.

If G is a pseudo l-group and $0 \neq x \in G$ we call an o-ideal M of G which is maximal with respect to not containing x a value of x. In this language then, a is pseudo-disjoint to b if and only if every value of a contains b, and vice versa.

LEMMA 2. Suppose G is a pseudo l-group and $0 < a \in G$, $0 < b_i \in G$ $(i=1,\dots,k)$. Assume further that the b_i are pairwise pseudo-disjoint, while a is pseudo-disjoint to $b_1+b_2+\dots+b_k$. Then a is pseudo-disjoint to each b_i .

PROOF. Let M be a value of a; then by our assumption $b_1+b_2+\cdots+b_k$ is in M, and so by convexity each $b_i \in M$. On the other hand if N is a value of b_i , each $b_j \in N$, for $j \neq i$; this makes N a value of $b_1+b_2+\cdots+b_k$, and hence $a \in N$. It follows then that each b_i is pseudo-disjoint to a.

PROOF OF THEOREM A. Suppose G is a pseudo l-group, $0 < x \in G$ and x_1, x_2, \dots, x_k is a maximal, pairwise pseudo-disjoint set of elements of G exceeding x. Relabel $x_1 = a$ and $b = x_2 + x_3 + \dots + x_k$; then a and b are pseudo-disjoint.

If G is a group of divisibility as well, there is semivaluation v from a field K onto G. By Lemma 1 we may find $0 < g \in G$ pseudo-disjoint to both a and b, such that x < g. By Lemma 2 g is pseudo-disjoint to each x_i $(i=1, \dots, k)$; this contradicts the maximality of the set x_1, x_2, \dots, x_k over x.

This proves the theorem.

Our first corollary concerns v-groups.

Theorem B. Let Λ be a partially ordered set, R_{λ} be an ordered subgroup of the reals for each $\lambda \in \Lambda$; set $V = V(\Lambda, R_{\lambda})$. If V is a group of divisibility then Λ is a root system and hence V is an l-group.

PROOF. If Λ is not a root system there exists a $v \in \Lambda$ with pairwise incomparable elements above v in Λ . Let $\{\lambda_i | i \in I\}$ be a set of mutually incomparable elements of Λ all of which exceed v, and suppose $\{\lambda_i | i \in I\}$ is also maximal with respect to these properties. Fix $j \in I$ and define $a, b \in V$ as follows:

$$a_{\lambda} = 1$$
, if $\lambda = \lambda_{j}$, $b_{\lambda} = 1$, if $\lambda = \lambda_{i}$, $i \neq j$,
= 0, otherwise; = 0, otherwise.¹

Clearly 0 < a, $b \in V$ and a is pseudo-disjoint to b; moreover the pair $\{a, b\}$ satisfies the conditions of Theorem A relative to, say, $x \in V$, where

$$x_{\lambda} = 1$$
 if $\lambda = \nu$;
= 0 otherwise.

By the theorem we obtain a contradiction: for if there is an element $0 < g \in G$, pseudo-disjoint to both a and b which exceeds x, then we contradict the maximality of the set $\{\lambda_i | i \in I\}$ over ν . Thus V cannot be a group of divisibility unless Λ is a root system.

If G is a pseudo l-group and $0 < u \in G$ has the property that no strictly positive element is pseudo-disjoint to u, we call u a weak order unit.

COROLLARY 1. Suppose the pseudo l-group G has a weak order unit u which can be written as the sum of a pair of pseudo-disjoint elements which are not disjoint. Then G is not a group of divisibility.

PROOF. Write u=a+b with a, b>0 in G as prescribed in the statement of the corollary, and suppose 0 < c < a, b. Then $\{a, b\}$ is a maximal pseudodisjoint set over c, and Theorem A applies.

Let G be a p.o. group and A be an o-ideal of G. We call G a lex-extension of A (by G/A) if for each $0 < a \in A$ and $0 < g \in G \setminus A$, g > a. G is a direct lex-extension of A if A is a direct summand: equivalently, $G = B \oplus A$ and $0 \le g = (b, a)$ if and only if b > 0, or b = 0 and $a \ge 0$. We then write $G = B \times A$. If A and B are l-groups then $G = B \times A$ is a pseudo l-group [3], and under these assumptions G is an l-group if and only if A = 0 or B is an o-group.

Call a weak order unit u in an l-group B decomposable if u can be written as a sum of pairwise disjoint, strictly positive elements of B.

COROLLARY 2. Let $A \neq 0$ and B be l-groups, and suppose that B has a decomposable weak unit. Then $G = B \times A$ is not a group of divisibility.

We compare our last corollary with Ohm's theorem 5.3 in [8]. Consider his condition labeled (5.1): there exist b_1 , $b_2 \in B$ such that b_1 and b_2 are

¹ We may assume without loss of generality that the number 1 is in each R_{λ} .

incomparable, and a subdirect representation of B as a subdirect product of o-groups B_i ($i \in I$) by an l-isomorphism σ such that $b_1\sigma_i \neq b_2\sigma_i$, for all $i \in I$. It is equivalent to the existence of a decomposable weak order unit in B.

To see this note that if Ohm's (5.1) holds for an *l*-group B, and b_1 and b_2 are as specified above, then if we set $u=(b_1-b_2)\vee 0+(b_2-b_1)\vee 0$, u is a decomposable weak order unit. For $u\sigma_i=(b_1-b_2)\sigma_i\vee 0+(b_2-b_1)\sigma_i\vee 0$, and so $u\sigma_i=(b_1-b_2)\sigma_i$ or $(b_2-b_1)\sigma_i$, either of which is >0. Hence u is a weak order unit, and it is clearly decomposable.

Conversely, suppose B has a decomposable weak order unit u, and u=a+b, with 0 < a, $b \in B$ and $a \land b = 0$. If a minimal prime subgroup N of B contains u then by the minimality of N there exists an element $0 < x \in B \setminus N$ such that $x \land u = 0$, a contradiction. Consider then the family $\{N_{\lambda} | \lambda \in \Lambda\}$ of minimal prime subgroups of B; let $B_{\lambda} = B/N_{\lambda}$ and $\sigma: B \to \Pi B_{\lambda}$ be the induced l-embedding. Each B_{λ} is an o-group and $u\sigma_{\lambda} > 0$, for each $\lambda \in \Lambda$. Let $b_1 = a - b$ and $b_2 = 0$; then this pair satisfies Ohm's condition relative to the mapping σ . (We refer the reader to [2, pp. 1.14–1.15 and pp. 2.13–2.14].)

His Theorem 5.3 is somewhat more general than Corollary 2 in view of the fact that we assume A to be an *l*-group, whereas he does not.

Following Corollary 3.3 in [8] Ohm remarks that if one takes the polynomial ring k[x, y] in two indeterminates over the field k, and localizes by the ideal generated by x and y, one obtains a local ring whose group of divisibility is a cardinal sum of copies of Z, the integers in their usual order; the number of copies of Z is at least 2 since the local ring is not a valuation ring. If G is then the group of divisibility of a domain D whose quotient field is k, Corollary 3.3 in [8] shows that the direct lex-extension of G by this cardinal sum of integers is again a group of divisibility. If G is an I-group such a lex-extension is a pseudo I-group which is not an I-group, providing a large class of examples of such pseudo I-groups which are groups of divisibility. In view of the observation in §1 that every pseudo I-group can be embedded in a reasonably "nice" way in a v-group, the examples here contrasted with Theorem B leave a rather monstrous question mark as to the nature of groups of divisibility, not only in the context of pseudo I-groups, but in general as well.

3. Polynomial rings and Gauss' lemma. We conclude this note with a result that calculates for an integral domain D whose group of divisibility is an l-group, the group of divisibility of its polynomial ring D[x] in one variable. Curiously, an analogue of the classical Gauss lemma for

² In view of Theorem A there are infinitely many copies of Z in these cardinal sums.

polynomials crops up at a rather crucial juncture. First, a general preliminary remark:

PROPOSITION. Let D be an integral domain, G be its group of divisibility; then G(D[x]) is a direct extension of G by a cardinal sum of copies of Z.

PROOF. Let k be the quotient field of D. We note here that the group of units U(D) of D is also the group of units of D[x]. Further D[x] and k[x] have same quotient field, namely k(x), the field of rational functions in x with coefficients in k. Finally, the group of units of k[x] is k^* . Thus

$$G = k^*/U(D)$$
, $G(D[x]) = k(x)^*/U(D)$, and $G(k[x]) = k(x)^*/k^*$,

and the latter is a cardinal sum of integers; see [7, Theorem 4.3]. Clearly, the inclusion of G in G(D[x]) is a convex order embedding, and the canonical epimorphism $G(D[x]) \rightarrow G(k[x])$ is an o-epimorphism. Hence $G(D[x])/G \simeq G(k[x])$; since G(k[x]) is abstractly a free abelian group, the extension is direct.

Now suppose G = G(D) is an *l*-group; then D has the following properties:

- (1) any finite set of nonzero elements of D has a greatest common divisor, and
- (2) if d divides ab $(a, b, d \in D)$ then d=xy where x divides a and y divides b. This is so because G, being an l-group, satisfies the Riesz interpolation property: if $0 \le a_1$, $a_2 \in G$ and $0 \le b \in G$, then $b \le a_1 + a_2$ implies that $b=b_1+b_2$, with $0 \le b_i \le a_i$ (i=1, 2).

Call a polynomial p(x) in D[x] primitive if the greatest common divisor of the coefficients of p(x) is a unit of D. If G is an l-group any polynomial $g(x) \in D[x]$ can be written uniquely (up to units) as $g(x)=d \cdot g_0(x)$, where $g_0(x)$ is primitive and d is the greatest common divisor of the coefficients of g(x).

The following is a crucial lemma.

LEMMA 3 (GAUSS' LEMMA). If the group of divisibility G of an integral domain D satisfies the Riesz interpolation property, the product of two primitive polynomials in D[x] is primitive.

PROOF. Let $p(x)=a_0+a_1x+\cdots+a_mx^m$ and $q(x)=b_0+b_1x+\cdots+b_nx^n$ be primitive polynomials, and $p(x)q(x)=c_0+c_1x+\cdots+c_{m+n}x^{m+n}$. Suppose $d\in D$ divides all c_k , and is not a unit. Let i_0 (j_0) be the first index such that d fails to divide a_{i_0} (b_{j_0}) ; set $k_0=i_0+j_0$. Then d divides $c_{k_0}=a_0b_{k_0}+\cdots+a_{i_0}b_{j_0}+\cdots+a_{k_0}b_0$, and so d divides $a_{i_0}b_{j_0}$. Since G satisfies the Riesz interpolation property $d=x_0y_0$ where x_0 (y_0) divides a_{i_0} (b_{j_0}) . Now x_0 divides each c_k , each a_i for $i=0,1,\cdots,i_0$ and each b_j for $j=0,1,\cdots,j_0-1$.

By induction, x_0 is a unit and so d divides b_{i_0} , which is a contradiction. We conclude that p(x)q(x) is primitive, and the lemma is proved.

THEOREM C. If the group of divisibility G of the integral domain D is an l-group, then G(D[x]) is a cardinal sum of G with a cardinal sum of copies of Z; in particular G(D[x]) is an l-group.

PROOF. Recall that a saturated multiplicative system of an integral domain is a subset of nonzero elements, closed under multiplication, which contains along with an element d all the divisors of d. Mott (see [7, Theorem 5.1]) showed that there is a natural isomorphism between the lattice of saturated multiplicative systems of an integral domain and the o-ideals of its group of divisibility.

Lemma 3 says that the subset S of primitive polynomials in D[x] is multiplicative; it is clearly saturated. Also, the nonzero elements of D form a multiplicative system in D[x] which is saturated; denote this subset by D^* . Since G is an I-group we may write every nonzero polynomial f(x) as a product of an element from D^* and an element of S; evidently $S \cap D^* = U(D)$. By Mott's Theorem (and the logical extension thereof) there exist o-ideals A and B of G(D[x]) such that G(D[x]) is the cardinal sum of A and B; if A corresponds to D^* then clearly $A \simeq G$, and it is immediate that B (corresponding to S) is isomorphic to G(k[x]). This concludes the proof of Theorem C.

We offer the following remark in the way of a converse of Theorem C. Let D be an integral domain and G be its group of divisibility. Without any further assumptions G is an o-ideal of G(D[x]); so suppose it splits off cardinally. Then $G(D[x]) = G \square M$, where M is an o-ideal of G(D[x]); using Mott's correspondence again we come up with a saturated multiplicative system T in D[x] having the properties that (1) $D^* \cap T = U(D)$ and (2) every nonzero polynomial f(x) can be written (uniquely up to units) as the product of an element of D^* and one from T. Now let S be the S of primitive polynomials; clearly $S \subseteq T$, and if $P(x) \in T$ but is not primitive, then write $P(x) = d \cdot q(x)$, and pick d to be a nonunit of D. Since T is saturated $P(x) \in T$, but this violates the uniqueness of such expressions. Hence T = S.

Moreover pick $0 \neq a, b \in D$ and consider f(x) = a + bx; by writing f(x) as a product of an element from D^* and an element from S we locate the greatest common divisor of a and b. We can therefore make the following conclusion.

THEOREM D. Let G be the group of divisibility of the integral domain D; let H=G(D[x]). If H is the cardinal sum of G and G(k[x]) then

(1) any finite set of nonzero elements of D has a greatest common

divisor, and

- (2) the subset S of primitive polynomials over D is a saturated multiplicative system.
 - If G satisfies the Riesz interpolation property it is an l-group.

Finally, in view of Theorem C conditions (1) and (2) are sufficient to insure that G split as a cardinal summand of H.

In closing we pose one of many questions that arise naturally here: if G = G(D) satisfies the Riesz interpolation property, then does G(D[x])?

BIRLIOGRAPHY

- 1. P. Conrad, Representations of partially ordered abelian groups as groups of real valued functions, Acta Math. 116 (1966), 199-221. MR 34 #1418.
 - 2. ——, Lattice ordered groups, Tulane University, New Orleans, La., 1970.
 - 3. P. Conrad and J. R. Teller, Abelian pseudo lattice ordered groups (preprint).
- 4. P. Jaffard, Contribution à l'étude des groupes ordonnés, J. Math. Pures Appl. (9) 32 (1953), 203-280. MR 15, 284.
- 5. ——, Les systèmes d'idéaux, Travaux et Recherches Mathematiques, IV, Dunod, Paris, 1960. MR 22 #5628.
- 6. W. Krull, Allgemeine Bewertungstheorie, J. Reine Angew. Math. 167 (1931), 160-196.
 - 7. J. Mott, The group of divisibility and its applications (preprint).
- 8. J. Ohm, Semi-valuations and groups of divisibility, Canad. J. Math. 21 (1969), 576-591. MR 39 #4146.
- 9. D. Zelinsky, Topological characterizations of fields with valuations, Bull. Amer. Math. Soc. 54 (1948), 1145-1150. MR 10, 426.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FLORIDA 32601