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Abstract. A permanent group is a group of nonsingular

matrices on which the permanent function is multiplicative. We

consider only permanent groups which contain the group of non-

singular diagonal matrices. If the underlying field is infinite of

characteristic zero or greater than n, then each such permanent

group consists only of matrices in which exactly one diagonal has all

nonzero entries.

A permanent group is a group of nonsingular matrices on which the

permanent function is multiplicative. One example is 3>„(F), the group

of nonsingular n X« diagonal matrices over the field F. Marcus and Mine

[3] conjectured that A„, the groups of «xn matrices of the form PD

where P is a permutation matrix and D e 9n(F) is a maximal permanent

group. In this conjecture the field F was not specified and the first author

[1] verified the conjecture for the field of complex numbers. In this

paper we consider the set 3^n(F) of those permanent groups which contain

@n(F), and characterize ^n(F) when Fis an infinite field with char F—0

or >«.

In [2] we defined the sets/n(F) of all« x« matrix groups G of nonsingu-

lar matrices over F satisfying:

(i) 2¿>n(F)<G, and

(ii) A, BeG implies A ° BT e S>„(F)

where "»" denotes the Hadamard product. Here, we are also concerned

with the set ¥¡ n(F) of «x« nonsingular matrix groups over F such that

G = H ■ K={hk, h e H,he K} where:

(i) H es/„(F),

(ii) A" is a group of «xn permutation matrices, and

(iii) (PHP-l\PeK)esfn(F).
Note that 2JJF)^H for every Hes/n(F) so that 2n(F)^G for every

G e <ën{F).
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Yet another set of matrix groups is Sn{F), consisting of all groups of

nxn nonsingular matrices over F such that:

(i) 3n{F)^G, and
(ii) A e G implies A has a unique nonzero diagonal where, by an abuse

of language, nonzero diagonal shall mean every entry of the diagonal is

nonzero.

If A is any «x« matrix with at least one nonzero diagonal we define

PA{QA) to be any one of the permutation matrices such that PAA{AQA)

has nonzero main diagonal. The number of nonzero entries in row i

(columny) of a matrix B will be denoted by r¿{B) {c¡{B)). The (/,/) entry

of the product of several matrices A, B, C will be denoted {ABC)U.

The set {1, • • • , n} will be denoted by [n] and throughout n> 1.

Theorem.    If F is an infinite field and char F=0 or >n then 0"n{F) =

Mn{F)=Vn{F).

We demonstrate the inclusions %n{F)<=, 0"n{F), ^n{F)^^n{F), and

'36'n{F)<^'t$n{F) in Propositions 1, 3, and 6 respectively with varying

restrictions on F. The hypothesis of our theorem implies the hypotheses

in each of these propositions.

1. Proposition.    If F is afield with at least 3 elements then ^'„(/•")£

Proof.    If A, B e G=H ■ Ketfn{F) let

A = AJ>iA2P2 ■ ■ ■ ASPS    and    B = B^^Q., ■ • • B,Qt

where /1¿ e H, PtG K for ; g [s] and B¡ e H, Q¡ e K for ; e [/]. Define

the products

Pi-PiPn-f'F*     ie[s],

Qi = Q1Q2 ■ ■ ■ Qj-i,   je[t]\{l},

Ôi = A,-
Then

A = AlP1Pi-}A,P,P^A3 ■ ■ ■ AS^PS^P-1ASPS,

B = ûxBx&%B%Q? ■ ■ ■ Bt_&l&tBtQt.

It is immediate that P^A e (PHP-'\P e K) and BQ^QJ1 e (PHP-^P e K)

while {PHP-l\P eK)e s>/n{F).

Since F has at least 3 elements, si'„{F)c J>n{F) [2, Theorem 3.1].

Therefore,

per AB = psr^ABQ^QY1)

= pcr{Pï1A)per{BQ^Qjl) = per A per B.
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2. Lemma. Let F be an infinite field and A = (aij), B=(bij) be «x«

matrices over F. If /£ [n]X [«] and (i,j) eJ always implies there exists

k e [«] such that aikbkjr^0 then there exists D e ¡3>n(F)for which (ADB)ij^0

for each (i,j) eJ.

Proof. Let D=diag[x1, • ■ • , xj be a diagonal matrix of indetermi-

nates x¿, i e [«], over F and consider the set of polynomials

(2.1) ft£xi, ■ • ■ , xn) = (ADB)(j = 2 aisxsbsj       (/, j) e J.
s=l

By hypothesis there is k e [«] such that aikbk¡¿¿0 so that each/¿J is nonzero.

Hence f=YJu.nejfa is a nonzero polynomial. Since Fis infinite there is

an «-tuple a=(a1, • • • , aj of elements from F such that /(ot)5¿0 [4,

Theorem 14, p. 38]. If, say, a¿=0 let

g(x) = /(a,, • • ■ , a¿_l5 x, ai+1, • •;., a„).

Because Fis infinite there is a nonzero /J in Fsuch that g (ß) ¿¿0. Accordingly

we may assume a¿?íO for all i e [n] and choose F> = diag[a1, ■ • ■ , »J.

3. Proposition. If F is an infinite field and char F=0 or >n then

0>n(F)c.®n{F).

Proof. Suppose a group G e £^„(F) contains a matrix ^ with at

least 2 distinct nonzero diagonals determined by the permutations a

and r. Consider an i e [n] such that a(i)^r(i) and CeG such that

ri(C) = max{rj(5)|5eG}. Since AeG and r,(><)2£2, /-¿(C)^2. If iftl

choose a permutation matrix P interchanging 1 and i. Then PGP'1 e ¿Pn(F),

r^PCP-^r^PBP-1) for all fieG, and /■1(FCF"1)^2 since r1(PAP~1) =

r¿(/l)^2. Thus, without loss of generality we may take /=1.

Let C=(c(j), C~1 = (c'ij), and tt be a permutation which corresponds

to a nonzero diagonal of C~x\ i.e., c^-i(i)#0 for all / 6 [«]. In Lemma 2

take ,4 = C, 5=C"1, and

j = {(/, i) I i e [«]} u «i, tt-hO) I c1(#o}.

Lemma 2 then yields F> e 3¡n(F) such that E=CDC~1 has nonzero main

diagonal and A-1(F)=r1(C), since for all re [«] there exists ke [«] such

that cikc'ki^0 (because 2*=i c¿j¡Ái=0 an<i since for í such that cu^Q

we have c^c^-i«»?*©.

Let E=(eij). In particular eu#0 so we may assume ev^0 for ye [m]

and ^,=0 iorje [n]\[m] since, if not, there exists a permutation matrix F

fixing row 1 and column 1 in PEP-1 and which gives PEP'1 the desired

form. This is possible because PGP'1 is also in ¿Pn(F).
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For arbitrary B eG, BQB={b'i¡) has the form

<BX    0

(3.1)
\B3    B,

where Bx is mxm and the zero block may be empty; otherwise, if b'st¿¿0

for some s e [m] and t e [n]\[m] then Lemma 2 implies the existence of

D e 3sn{D) such that EDBQB has more than m nonzero entries in row 1,

contradicting r1(£)^r1(5) for all B eG. This follows upon taking A = E,

B=BQB=(b'i}), and /={(!, />[/ e [w]U{r}} in Lemma 2. For, eu ■ ¿>,'¿#0

when ie [m] and BQB has nonzero main diagonal while eisb'st^0 since

s e [m].

Now A has 2 nonzero diagonals cr and r such that ct(1)?ít(1). There

exists ift\ such that o{\)=r{i); i.e., a1<r(i)#0 and a!(T(1)=u¿r(¿)#0.

Choosing QA so that (^Ô.Ai^i^,) and (AQj)a = ai<,a) we find that

max{c1LßßjB)|.S e G}^2 and so r = max{c1(B1)\B e G}^2 in ZfgB=(Ij B°).

Let Te G satisfy <:1(7'1) = max{c1(Ä1)|Ä £ G} where 7\ is the upper

left-hand block in the decomposition (3.1) of T. By Lemma 2 there exists

D e 9sn{F) such that (72)7"-%#0 when /=/ £ [«] and c1{TDT~1) = c1{T1).

Let F=TDT~X. In addition we may assume that^^O forje [r] and

fn=0 for ye [m]\[r] since, if not, there exists a permutation matrix /"

which fixes rows and columns 1, m+1, • • •, n and gives PFP^1 the desired

form. This is possible because PGP'1 is also in ¿?n{F); and PEP'1 has

the same form as E since P does not permute columns [n]\[/7z].

An argument similar to the one showing that for arbitrary B eG the

matrix BQB has the form (3.1) shows that PBB has the further decomposi-

tion

Bu   Bl2

(3.2) I   0      fi,

where the zero block may be empty.

Another application of Lemma 2 yields D e Qn{F) such that K=FDE

has nonzero main diagonal and the form

Kxx    Kl2

(3.3) I   °      K'
o\

K¿        i  K3

where Kn is an rxr block with no zero entries and r^2. The existence

of the zero blocks follows immediately from (3.1) and (3.2) since we can

take PK = QK = I.
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Letting A=Kxl and B=K^, Lemma 2 ensures the existence of Du e

2>(F) such that KnDnKïl has all entries nonzero since Kn does. Letting

D = (D^ °j) we have that

JMl-t-'llJMl "12

//

and hence for a diagonal matrix A'=(A011 /) it ¡s apparent that per fyXtfl

= (per 4/y per X if and only if per(i^11A'11^11) = (per ?/n)2 per JTU.

If A'u = diag[x, 1, • ■ ■ , 1] and x is an indeterminate over F then the

coefficient of xr in the polynomial /f(x) = per i^1iA'u^11 —(per ^n)2x

is /"!n¿=i Unwind) which is nonzero for char F=0 or char F>n^.r. Since

Fis an infinite field there is a nonzero a e Fsuch that £(<x)#0. This contra-

dicts the supposition that some G e ¿Pn(F) contains a matrix with more than

one nonzero diagonal.

4. Lemma.    Let A = (ail), B1 = (bi]), 5Í = (<7¿3) and Ä2 = (c„) be nxn

matrices over an infinite field F satisfying:

(i) A has at least one nonzero diagonal, and

(ii) ba^O implies b'tj^0, i,j e [«].
There exist Du D2 e£^n(F) such that (B1QA1B2)i¡^0 implies

(B'^AD^y^Ç),       i,je[n].

Proof. Let F)1=diag[x1, ■ • • , xj and Z>2=diag[j1, • ■ • ,yn] where

the diagonal entries are indeterminates over F. Now,

n n     n

(BiQ~iBi)u = 2 bafie-H*)i    and    (B'iDiAD2B2)a = 22 &«***«3W
i-=t ;r=i /=i

Consider the set s^={(AÍF»1^F)252)¿3|(51f2^152),:j5íí0} of polynomials in

the variables xt, • ■ ■ , x„, )y1, r • • ,y„. Each polynomial in .,# has the form

^.i-'lsl)'.-'!./»-'!!!) + f,j(xl> '     ' ' xn> J>1> '     ' > jO

where the polynomial/^ has no terms in x, v^-ms) and í may be chosen so

that b'isasa-ns)ca-ns)j?±0. This is possible because (BlQ'^B2)ij =

2*=i ¿¿tO-Mvií^O so for some í, ^/»-idí^O and by (ii) we have

b'uCr-iMj^O and also Oj^(AQA)s=asa-xU), for í e [«].

Now, ri/e./z/^O since each /e J( is a nonzero polynomial. Hence

by [4, Theorem 14, p. 38] there exists a 2«-tuple a=(a!, • • • , a2„) of

elements in F such that II/ .///(a)^0 because Fis infinite and were some

¡x¡=0 we could find ß^O in F such that

Fi/tel' * * ' ' *<-i> ß> aí+i' " * » a2«) 5e °-
fe. //
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Accordingly we may assume a^O for all /£[2«] and setting Dy =

diagtocj, • • ■ , an] and Z)2=diag[ari+1, • • • , a2J we obtain the conclusion.

5. Lemma. If G is a maximal group in SSn{F) and F is an infinite field

then QAeG.

Proof. Suppose G contains A with QA $ G. Obviously Q~2 $ G.

The maximality of G implies that (G, Q~¿) contains a matrix with at

least two nonzero diagonals, say

(5.1) BiQftBm-Bn^iQT-'K

where we may take each a¡= — 1, i e [m— 1 ].

By Lemma 4 there are Du D2ei2>n{F) such that B1D1AD2B2 has

nonzero entries at least where B1QAiB2 does. Replacing B1 by B1Q~AB2

and B[ by BXDXAD2B2 in Lemma 4 we see that {B^DXAD2B2) ■ D3ADiB3

has nonzero entries at least where B1Q~llB2QA1B3 does for some D3,

Z>4 £ 2¿>n{F). Repeating this argument as necessary we obtain an element

of G, namely B1D1AD2B2 • ■ ■ D2m_3AD2m__2Bm which will have nonzero

entries at least where (5.1) does and hence will have two distinct nonzero

diagonals since (5.1) does.

6. Proposition.    If F is an infinite field then ¿@n{F)c'&n{F).

Proof. Let G be a maximal group in ¿8n{F). For very A eG there is

exactly one permutation matrix QA such that AQA has nonzero main diag-

onal. Let H=(AQA\A eG) and K={QA\A eG). By the previous lemma

both H and K are subgroups of G and therefore the complex H ■ K is

contained in G. On the other hand each A eG may be written A = AQAQA1

which implies G = H ■ K.

If H$s/n(F) there are A, Be H such that aitbH^0 and ijàj. Let

.Dj—diagtl, • • • , x, ■ ■ ■ , 1] where x is diagonal entryy and set E=ADjB.

Since F has at least 3 nonzero elements, x may be chosen so that if E={eij)

then

en = aiSxb}i +2<*íAj * 0   and    en = a,pcbH +^ajkbk, jt. 0.
Ä- * } k* i

Since H contains ¿/\{F) the matrix E is in H so has nonzero main diagonal

entries. Therefore E has at least 2 nonzero diagonal entries, contradicting

G e ätirl{F). Hence H e ,stfn(F).

If A e //then A=BQB for some B eG and has a nonzero main diagonal.

Thus any PAP'1 with P e K has a nonzero main diagonal; i.e., Q¡>A¡- i=/

so that PAP-' = PAP-1Ql,Al.-l e H. Thus (PHP-l\P e K)e.p/tl{F), com-

pleting the requirements for G e Y>'„(/■").
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