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SOLVABLE AND NILPOTENT NEAR-RING MODULES!
GORDON MASON

ABSTRACT. The center of a unital near-ring module M is
defined, leading to the construction of a lower central series and a
definition of R-nilpotence. Likewise a suitable definition of com-
mutators yields a derived series and R-solvability. When (R, +)
is generated by elements which distribute over M the R-nilpotence
(R-solvability) is shown to coincide with the nilpotence (solvability)
of the underlying group. In this case, nilpotence has implications
for R-normalizers and the Frattini submodule.

1. Introduction. For basic definitions see [2] or [3]. In this paper, by
“near-ring” is meant a right unital near-ring R satisfying x - 0=0 for
all x € R. Similarly a (left) near-ring module M over R will always be
assumed to be unital. In general a subgroup A of (M, +) is called an
R-subgroup if RAS 4, and A is an R-submodule if it is a normal R-sub-
group satisfying

(SM) ForallreR,meM,ac A, r(im+a) —rmeA.

In the unital case, a subgroup with property (SM) is in fact a normal
subgroup.

ISOMORPHISM THEOREM [2]. Let f: M—M' be an R-epimorphism.

(i) If A is an R-subgroup (R-submodule) of M, then f(A) is an R-
subgroup (R-submodule) of M'.

@ii) If A" is an R-subgroup (R-submodule) of M’ then f~'(A) is an
R-subgroup (R-submodule) of M.

(iii) If A is an R-subgroup (R-submodule) of M containing Ker f,
SHSA)=A4.

A normal series for M is a finite series M> M,>--->M,=0 where
each M, is an R-submodule of M;_;. Any two normal series for M have
equivalent refinements. M is called simple if it has no proper R-submodules
and irreducible if it has no proper R-subgroups. A composition series is
a normal series without repetition whose factors are all simple. The
Jordan-Holder theorem holds.
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2. Nilpotence. Define the center of zpM to be Z(M)=Zp(M)=
{a € M|r(b+sa)=rsa+rb for all be M, r, s€R}. Taking r=s=1 we
see Zp(M)=Z,(M). For x,ye M and r,se R define [y, x,r,s]=
r(y+sx)—ry—rsx and define the upper central series inductively by
Zy=0, Z,=Z(M), Z,;={x € M|y, x,r,s]€Z,_, for all ye M, r,s € R}.
Clearly these sets satisfy Z,=Z,,, for all i.

THEOREM 2.1. Z; is an R-submodule of M for all i and Z,|Z, =
Z(M|Z,_,).

Proor. Inductively, assume Z,_; is an R-submodule. We first show
that Z; is a subgroup of M. If x, x" € Z; then there exist z; € Z,_, for
j=1,2,--+,7such that

Hy + s(x — X)) = 1y + 2 + (= D)x’ + 5x)
=z, + rsx + r(y + z, + s(—1)x)
=z, +rsx + zz+ rs(—1)x" + r(y + z,)
=zy+rsx +z3+rs(—Dx" + 2z, +ry
=z5+ rsx + rs(—=1)x" + ry
=z5+ [zg + rs(—1)x" + rsx] + ry
=z + zg + z; + rs(x — x') + ry.

Hence r(y+s(x—x"))—ry—rs(x—x') € Z,_, as required. Moreover Z; is
clearly an R-subgroup. Also Z; has property (SM) since, if a € Z(M),
r € Rand b € M, then r(b+a)—rb=ra+rb—rb=ra € Z(M). Now suppose
inductively that Z, ,/Z, ,=Z(M|Z,_,). Then xeZ, iff [y, x,r,s]€Z,,
iff [y+Z,,, x+Z,_,, r, s]l=Z,; for all y+Z, ;e M|Z, ,. Hence
Z,)Z,_,=Z(M|Z,_,) as claimed, and this shows also that Z,/Z, , is an
R-submodule of M/Z,_,. By the isomorphism theorem therefore, Z; is an
R-submodule of M.

REMARK. An easy calculation shows that Z(M) is the categorical
center as defined in [1].

Define M to be R-nilpotent of class n if n is the least integer such that
Z,=M.

Writing [y, x,r, 1]=[y, x,r] we define the R-commutator of two
R-subgroups A and B to be the R-subgroup [4, By (or [4, B]) generated
by {[a,b,rllac A,be B, reR}.

PrOPOSITION 2.2. If B is an R-submodule of A< M, then [A, B) is an
R-submodule of A.

Proor. By definition, [4, B] is an R-subgroup of M. Since B is an
R-submodule of A, r(a+b)—ra€ B so [a,b,r]e B<A and [4, B] is
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an R-subgroup of A. Finally

r(a + {a, b, s]) — ra = r(a + b,) — ra, where [a,,b,s5] = b, €B
=r(a+b)—ra—rb, +rb
= la, by, r] + rla,, b, s] € [4, B]

for all a € A, r € R so the condition (SM) holds.

Define Mg=[M, M];. By the proposition, M’ is an R-submodule of
M, and in fact R’ is an ideal of R. Define M to be central if M=Z (M)
(iff M'=0).

THEOREM 2.3. (a) MM’ is central and if A is an R-submodule of M,
M| A is central iff A2 M.
(b) If N is an R-subgroup of M and N2 M’, then N is an R-submodule.

Proor. (a) A2M’' iff [x,y,rleA for all reR, x,yeM iff
[x+A, y+A4,r]=0in M/A forall re R, x,y € M iff [M|A, M|A]=0.

(b) N/M' is an R-subgroup of M/M’ by the isomorphism theorem and
MM’ is central. Therefore N/M’ is an R-submodule of M/M’ and so N
is an R-submodule of M.

REMARK 1. Since M is unital we see M is central iff it is abelian and
R is distributive over M.

REMARK 2. In general [M, M],#[M, M],. For example if G is
an abelian group, G is a module over the near-ring R={maps f:G—G|
f(0)=0}. Clearly [G, G];=0, but [G, G]r=D(G) the distributor sub-
module which is nonzero as R is not distributive over G.

Define as usual Ann M={r e R|rM=0}. Then Ann M is an ideal in R.
If Ann M =0, call M faithful.

PROPOSITION 2.4. If there exists a faithful central R-module M, then
R is aring.

ProoF. Since (r+s)m=rm+sm=sm+rm=(s+r)ym for all me M
and similarly r(s+1)— (rs+rt) € Ann M=0, therefore R is abelian and dis-
tributive and so is a ring.

Define the lower central series inductively by ZW=M,ZW=
[M, Zt—]g. By Proposition 2.2 each Z( is an R-submodule of M.

THEOREM 2.5. M is R-nilpotent of class n iff n is the least integer such
that Z™=0.

Proor. We first prove Z¥<=Z, ;. Inductively, since Z0=Z =M,
suppose Z+V<cZ, ..,.ThenZ, 2[M,Z, ;,1=2[M, ZV]=Z"). Hence
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Z'" < Z,=0. Moreover n is minimal for if Z*~1)=0 then using the series
ZnNc...cZ® we can show as above that Z%¥'<Z, | .. Therefore
M=ZWcZ,_; which contradicts the minimality of » in the upper central
series. The converse is proved similarly.

3. Solvability. Define the derived series for M inductively by MM =
M, M, MO=[M@ MGED]. and define M to be R-solvable if
M™ =0 for some n. Since inductively MW < Z —MHD=[M) MO
[M, Z0]=Z'"*D it follows that if M is R-nilpotent, it is R-solvable.

It is clear from the definitions that if M is R-nilpotent (R-solvable)
it is nilpotent (solvable) as a group. In fact if f: S—R is a near-ring homo-
morphism and pM is canonically an S-module then R-nilpotence (R-
solvability) implies S-nilpotence (S-solvability).

THEOREM 3.1. M is R-solvable iff M has a normal series whose factors
are all central.

Proor. If M is R-solvable then M(=0, so the series {M‘} is a
normal series in view of Proposition 2.2. Moreover each factor is central
by Theorem 2.3. Conversely, suppose M2 M;>---> M, =0 is a normal
series for which M,/M,, is central for all i. By induction if MV<M,,
then MU D=[MO MWI]c[M,;, M,]J< M, , by Theorem 2.3. Therefore
M,=0=M" =0,

ProposITION 3.2. (a) Fvery R-subgroup A and every factor module
M|B of an R-solvable module M is R-solvable.

(b) If B is an R-solvable R-submodule of M and M|B is R-solvable
then M is R-solvable.

ProoF. (a) The canonical monomorphism «: 4—M and epimorphism
p:M—M|B induce respectively monomorphisms «*¥):4*—M* and
epimorphisms f*): M®—(M/[B)¥).

(b) Given 0—>B—>*M—"M|B—0, (M/B)*)=0 implies = restricts to
) M%) —0 so M*) = ker w=1Im «. Since B™ =0, (M¥))(m) = pk+m) =0,

4. The distributively generated case. In this section we shall assume that
R is distributively generated (d.g.) over M, by which we mean that there
exists a multiplicative semigroup S< R such that s(m+n)=sm+sn for
all s€ S, m, ne€ M and such that S additively generates R. In this case
we note that s(—m)=—sm for all s€ S, me M and also a normal R-
subgroup of M is an R-submodule. Clearly Z R(M)g{a[b+sa=sa+b
for all se R, be M} and, when R is d.g. over M, equality holds. For
suppose r € R and r=t,+1t, where the ¢, are distributive over M (the proof
goes inductively for r=37,1¢). Then if b+sa=sa+b for all be M,
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s € R we have

r(b + sa) = t,(b + sa) + t,(b + sa) = t,b + tysa + t,b + tysa
=tb+ t,b + t;sa + ty,sa =rb + rsa = rsa + rb,
so a € Z(M).

Thus Zz(M)=M iff Z,(M)=M so that M is R-nilpotent of class 1 iff
M is nilpotent of class 1. In fact we shall show that R-nilpotence (R-
solvability) is equivalent to Z-nilpotence (Z-solvability). The main results
depend on the following group-theoretic lemma.

LEMMA 4.1. Let G be a group (written multiplicatively) and let A, B
be normal subgroups. Then for every integer n, for all a;€ A, b,€ B

n n —1 n —1
(ﬂ bia,.) (1‘[ bi) ([‘[ a,.) €[4, B).
1 1 1
Proor. First note that for all geG, ae A, beB gla, blg'=
[gag™, gbg~'1 € [A, B]. Then for alla, € A, b, € B
™ a\byla, blay'br" = [ay, bi)byayla, b](ba)) " € [4, B).
For n=2,
baybaasby 'bi'a oyt = byay [by, as]la,, by'1br et € [4, B).
For n=3 the result comes from repeated application of (*) and the identity
n —1 n —1 3 2 n
(I_I b,-) (H ai) - (n bita? [a,-, I b;{l ) b;lazt [I—[ a;, bfl] bilart.
1 1 i=n i—1 2
THEOREM 4.2. [A, Bl,=[A, Bl if A and B are R-submodules of M.

ProoF. Since 1 € R, every generator of [A4, Bl is in [4, B]p. Con-
versely if y=r(a+b)—ra—rb is a generator of [A4, B]p and r=27s,,
s; € S then

y= é (s:a + 5:6) — (é s,-a) - (i s,.b) € [A, B,

by the (additive form of the) lemma. Since [4, B], is an R-subgroup in
the d.g. case, the result follows.

COROLLARY 1. If A and B are R-submodules of M, [A, Blr=[B, A]g
and this is an R-submodule of M.

COROLLARY 2. M is R-nilpotent (R-solvable) iff M is Z-nilpotent
(Z-solvable).

CoRrOLLARY 3 [3, Theorem 4.4.3]. R abelian and d.g.=R is a ring.
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R-solvability can be expressed in terms of an R-composition series as
follows. Following [4] we define an ideal P of R to be prime if whenever
A, B are ideals such that AB< P then A < P or BS P (here AB refers to the
additive group generated by all ab).

ProposiTION 4.3 [4]. If M is a cyclic simple module, Ann M is a prime
ideal.

ProPOSITION 4.4. If M is R-solvable and has a composition series, the
series has cyclic factors A; where Ann A, is a prime ideal.

PROOF. M has a normal series with central factors. By Theorem 2.3
this can be refined to a composition series with central simple factors
i.e. central irreducible factors which are therefore cyclic and so have prime
annihilators by 4.3.

We shall now investigate some consequences of R-nilpotence.

Let A be an R-subgroup of M. Define the R-normalizer of 4 to be
Ng(A)=N(4)={x € M|rx+a—rxe Aforallac A, r € R}.

PROPOSITION 4.5. (a) N(A) is an R-subgroup of M. (b) N(A) is the
largest R-subgroup of M in which A is an R-submodule.

Proor. (a) Consider, for x, y € N(4), z=r(x—y)+a—r(x—y) where
r=31s; s; €S. By induction on n,

n n

z=85x—85y+ (Zs,-)(x—y) +a-— (zsi)(x — )+ 5y —5nx
2 2
=sx—85y+d + 5,y — sx, aeA,

so z € A. Clearly x € N(4)=-tx € N(A) for all t € R.

(b) A is clearly a normal subgroup of N(4) so it is an R-submodule
since M is d.g. If 4 is an R-submodule of B< M then, for all b€ B,
r € R, rb € B; so by the normality of 4 in B, rb+a—rbe Bforallac 4
and hence b € N(A), i.e. BS N(A).

PROPOSITION 4.6. If M is nilpotent and A is an R-subgroup of M then
A S N(A).

Proor. If k is the largest integer such that Z, < A4, choose x € Z,,,
x¢ A. Thenforallae A,re R, a+[—a,x,1,rl=rx+a—rxec A+Z,< A
5o x € N(A).

COROLLARY. If M is nilpotent, every maximal R-subgroup of M is
an R-submodule.

LEMMA 4.7. A cyclic R-module Rm is central iff R'< Ann m.
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PROOF. Rm is central iff x+sy=sy+x for all x,ye Rm, seR iff
(r+stym=(st+rym for all r,s,teR iff r+st—(st+r)e Annm iff
[R, R]<Ann m.

Define the Frattini subgroup of M to be

F(M) = Fp(M) = (N {maximal proper R-subgroups of M} if any exist
= M otherwise.
Thus by universal algebra, F(M) is the set of nongenerators of M.

ProprosITION 4.8. If F(M)>M’, every maximal R-subgroup of M is
an R-submodule and when R'< Ann M the converse is true.

PrOOF. F(M)> M’ implies A= M’ for every maximal R-subgroup 4.
By Theorem 2.3, 4 is an R-submodule. Conversely if every maximal
R-subgroup A4 is an R-submodule then M/A is an irreducible R-module
so is cyclic. Writing M/4=Ra, R’ Ann M< Ann (M/A)< Ann a implies
by the lemma that M/A is central. Thus 4> M’ and as this is true for all
maximal R-subgroups 4, F(M)> M’ as required.

THEOREM 4.9. If M is nilpotent and R'< Ann M then M’ < F(M).

Proor. If M is nilpotent, every maximal R-subgroup is an R-
submodule by the corollary to 4.6 so M’< F(M) by Proposition 4.8.
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