SOLVABLE AND NILPOTENT NEAR-RING MODULES¹

GORDON MASON

ABSTRACT. The center of a unital near-ring module $_RM$ is defined, leading to the construction of a lower central series and a definition of R-nilpotence. Likewise a suitable definition of commutators yields a derived series and R-solvability. When (R, +) is generated by elements which distribute over M the R-nilpotence (R-solvability) is shown to coincide with the nilpotence (solvability) of the underlying group. In this case, nilpotence has implications for R-normalizers and the Frattini submodule.

1. Introduction. For basic definitions see [2] or [3]. In this paper, by "near-ring" is meant a right unital near-ring R satisfying $x \cdot 0 = 0$ for all $x \in R$. Similarly a (left) near-ring module R over R will always be assumed to be unital. In general a subgroup A of (M, +) is called an R-subgroup if $RA \subseteq A$, and A is an R-submodule if it is a normal R-subgroup satisfying

(SM) For all
$$r \in R$$
, $m \in M$, $a \in A$, $r(m + a) - rm \in A$.

In the unital case, a subgroup with property (SM) is in fact a normal subgroup.

ISOMORPHISM THEOREM [2]. Let $f: M \rightarrow M'$ be an R-epimorphism.

- (i) If A is an R-subgroup (R-submodule) of M, then f(A) is an R-subgroup (R-submodule) of M'.
- (ii) If A' is an R-subgroup (R-submodule) of M' then $f^{-1}(A)$ is an R-subgroup (R-submodule) of M.
- (iii) If A is an R-subgroup (R-submodule) of M containing ker f, $f^{-1}(f(A)) = A$.

A normal series for M is a finite series $M \supset M_1 \supset \cdots \supset M_n = 0$ where each M_i is an R-submodule of M_{i-1} . Any two normal series for M have equivalent refinements. M is called simple if it has no proper R-submodules and irreducible if it has no proper R-subgroups. A composition series is a normal series without repetition whose factors are all simple. The Jordan-Hölder theorem holds.

Received by the editors July 25, 1972.

AMS (MOS) subject classifications (1970). Primary 16A76.

Key words and phrases. Near-ring module, center, solvable, nilpotent.

¹ This research was supported in part by the National Research Council of Canada.

2. Nilpotence. Define the center of $_RM$ to be $Z(M) = Z_R(M) = \{a \in M | r(b+sa) = rsa + rb \text{ for all } b \in M, r, s \in R\}$. Taking r=s=1 we see $Z_R(M) \subseteq Z_Z(M)$. For $x, y \in M$ and $r, s \in R$ define [y, x, r, s] = r(y+sx) - ry - rsx and define the upper central series inductively by $Z_0=0$, $Z_1=Z(M)$, $Z_i=\{x \in M | [y,x,r,s] \in Z_{i-1} \text{ for all } y \in M, r, s \in R\}$. Clearly these sets satisfy $Z_i \subseteq Z_{i+1}$ for all i.

THEOREM 2.1. Z_i is an R-submodule of M for all i and $Z_i/Z_{i-1} = Z(M/Z_{i-1})$.

PROOF. Inductively, assume Z_{i-1} is an R-submodule. We first show that Z_i is a subgroup of M. If $x, x' \in Z_i$ then there exist $z_j \in Z_{i-1}$ for $j=1, 2, \dots, 7$ such that

$$r(y + s(x - x')) = r(y + z_1 + s(-1)x' + sx)$$

$$= z_2 + rsx + r(y + z_1 + s(-1)x')$$

$$= z_2 + rsx + z_3 + rs(-1)x' + r(y + z_1)$$

$$= z_2 + rsx + z_3 + rs(-1)x' + z_4 + ry$$

$$= z_5 + rsx + rs(-1)x' + ry$$

$$= z_5 + [z_6 + rs(-1)x' + rsx] + ry$$

$$= z_5 + z_6 + z_7 + rs(x - x') + ry.$$

Hence $r(y+s(x-x'))-ry-rs(x-x')\in Z_{i-1}$ as required. Moreover Z_i is clearly an R-subgroup. Also Z_1 has property (SM) since, if $a\in Z(M)$, $r\in R$ and $b\in M$, then $r(b+a)-rb=ra+rb-rb=ra\in Z(M)$. Now suppose inductively that $Z_{i-1}/Z_{i-2}=Z(M/Z_{i-2})$. Then $x\in Z_i$ iff $[y,x,r,s]\in Z_{i-1}$ iff $[y+Z_{i-1}, x+Z_{i-1}, r, s]=Z_{i-1}$ for all $y+Z_{i-1}\in M/Z_{i-1}$. Hence $Z_i/Z_{i-1}=Z(M/Z_{i-1})$ as claimed, and this shows also that Z_i/Z_{i-1} is an R-submodule of M/Z_{i-1} . By the isomorphism theorem therefore, Z_i is an R-submodule of M.

REMARK. An easy calculation shows that Z(M) is the categorical center as defined in [1].

Define M to be R-nilpotent of class n if n is the least integer such that $Z_n = M$.

Writing [y, x, r, 1] = [y, x, r] we define the *R*-commutator of two *R*-subgroups *A* and *B* to be the *R*-subgroup $[A, B]_R$ (or [A, B]) generated by $\{[a, b, r] | a \in A, b \in B, r \in R\}$.

PROPOSITION 2.2. If B is an R-submodule of $A \subseteq M$, then [A, B] is an R-submodule of A.

PROOF. By definition, [A, B] is an R-subgroup of M. Since B is an R-submodule of A, $r(a+b)-ra \in B$ so $[a, b, r] \in B \subseteq A$ and [A, B] is

an R-subgroup of A. Finally

$$r(a + [a_1, b, s]) - ra = r(a + b_1) - ra$$
, where $[a_1, b, s] = b_1 \in B$
= $r(a + b_1) - ra - rb_1 + rb_1$
= $[a, b_1, r] + r[a_1, b, s] \in [A, B]$

for all $a \in A$, $r \in R$ so the condition (SM) holds.

Define $M'_R = [M, M]_R$. By the proposition, M' is an R-submodule of M, and in fact R' is an ideal of R. Define M to be central if $M = Z_R(M)$ (iff M' = 0).

THEOREM 2.3. (a) M/M' is central and if A is an R-submodule of M, M/A is central iff $A \supseteq M'$.

(b) If N is an R-subgroup of M and $N \supseteq M'$, then N is an R-submodule.

PROOF. (a) $A \supseteq M'$ iff $[x, y, r] \in A$ for all $r \in R$, $x, y \in M$ iff [x+A, y+A, r] = 0 in M/A for all $r \in R$, $x, y \in M$ iff [M/A, M/A] = 0.

(b) N/M' is an R-subgroup of M/M' by the isomorphism theorem and M/M' is central. Therefore N/M' is an R-submodule of M/M' and so N is an R-submodule of M.

REMARK 1. Since M is unital we see M is central iff it is abelian and R is distributive over M.

REMARK 2. In general $[M, M]_Z \neq [M, M]_R$. For example if G is an abelian group, G is a module over the near-ring $R = \{\text{maps } f: G \rightarrow G \mid f(0) = 0\}$. Clearly $[G, G]_Z = 0$, but $[G, G]_R = D(G)$ the distributor submodule which is nonzero as R is not distributive over G.

Define as usual Ann $M = \{r \in R | rM = 0\}$. Then Ann M is an ideal in R. If Ann M = 0, call M faithful.

PROPOSITION 2.4. If there exists a faithful central R-module M, then R is a ring.

PROOF. Since (r+s)m=rm+sm=sm+rm=(s+r)m for all $m \in M$ and similarly $r(s+t)-(rs+rt) \in Ann \ M=0$, therefore R is abelian and distributive and so is a ring.

Define the lower central series inductively by $Z^{(0)} = M$, $Z^{(i)} = [M, Z^{(i-1)}]_R$. By Proposition 2.2 each $Z^{(i)}$ is an R-submodule of M.

THEOREM 2.5. M is R-nilpotent of class n iff n is the least integer such that $Z^{(n)}=0$.

PROOF. We first prove $Z^{(i)} \subseteq Z_{n-i}$. Inductively, since $Z^{(0)} = Z_n = M$, suppose $Z^{(i-1)} \subseteq Z_{n-i+1}$. Then $Z_{n-i} \supseteq [M, Z_{n-i+1}] \supseteq [M, Z^{(i-1)}] = Z^{(i)}$. Hence

- $Z^{(n)} \subseteq Z_0 = 0$. Moreover n is minimal for if $Z^{(n-1)} = 0$ then using the series $Z^{(n-1)} \subseteq \cdots \subseteq Z^{(0)}$ we can show as above that $Z^{(i)} \subseteq Z_{n-1-i}$. Therefore $M = Z^{(0)} \subseteq Z_{n-1}$ which contradicts the minimality of n in the upper central series. The converse is proved similarly.
- 3. **Solvability.** Define the derived series for M inductively by $M^{(1)} = [M, M]_R$, $M^{(i)} = [M^{(i-1)}, M^{(i-1)}]_R$, and define M to be R-solvable if $M^{(n)} = 0$ for some n. Since inductively $M^{(i)} \subset Z^{(i)} \Rightarrow M^{(i+1)} = [M^{(i)}, M^{(i)}] \subseteq [M, Z^{(i)}] = Z^{(i+1)}$ it follows that if M is R-nilpotent, it is R-solvable.

It is clear from the definitions that if M is R-nilpotent (R-solvable) it is nilpotent (solvable) as a group. In fact if $f: S \rightarrow R$ is a near-ring homomorphism and RM is canonically an S-module then R-nilpotence (R-solvability) implies S-nilpotence (S-solvability).

THEOREM 3.1. M is R-solvable iff M has a normal series whose factors are all central.

PROOF. If M is R-solvable then $M^{(n)} = 0$, so the series $\{M^{(i)}\}$ is a normal series in view of Proposition 2.2. Moreover each factor is central by Theorem 2.3. Conversely, suppose $M \supset M_1 \supset \cdots \supset M_n = 0$ is a normal series for which M_i/M_{i+1} is central for all i. By induction if $M^{(i)} \subset M_i$, then $M^{(i+1)} = [M^{(i)}, M^{(i)}] \subset [M_i, M_i] \subset M_{i+1}$ by Theorem 2.3. Therefore $M_n = 0 \Rightarrow M^{(n)} = 0$.

PROPOSITION 3.2. (a) Every R-subgroup A and every factor module M/B of an R-solvable module M is R-solvable.

- (b) If B is an R-solvable R-submodule of M and M/B is R-solvable then M is R-solvable.
- PROOF. (a) The canonical monomorphism $\alpha: A \to M$ and epimorphism $\beta: M \to M/B$ induce respectively monomorphisms $\alpha^{(k)}: A^{(k)} \to M^{(k)}$ and epimorphisms $\beta^{(k)}: M^{(k)} \to (M/B)^{(k)}$.
- (b) Given $0 \rightarrow B \rightarrow \alpha M \rightarrow \pi M/B \rightarrow 0$, $(M/B)^{(k)} = 0$ implies π restricts to $\pi^{(k)}: M^{(k)} \rightarrow 0$ so $M^{(k)} \subset \ker \pi = \operatorname{Im} \alpha$. Since $B^{(m)} = 0$, $(M^{(k)})^{(m)} = M^{(k+m)} = 0$.
- 4. The distributively generated case. In this section we shall assume that R is distributively generated (d.g.) over M, by which we mean that there exists a multiplicative semigroup $S \subseteq R$ such that s(m+n)=sm+sn for all $s \in S$, m, $n \in M$ and such that S additively generates R. In this case we note that s(-m)=-sm for all $s \in S$, $m \in M$ and also a normal R-subgroup of M is an R-submodule. Clearly $Z_R(M) \subseteq \{a \mid b+sa=sa+b \}$ for all $s \in R$, $s \in M$ and, when $s \in R$ is d.g. over $s \in R$ and $s \in R$, $s \in R$ and $s \in R$, $s \in R$ where the $s \in R$ are distributive over $s \in R$ and $s \in R$

 $s \in R$ we have

$$r(b + sa) = t_1(b + sa) + t_2(b + sa) = t_1b + t_1sa + t_2b + t_2sa$$

= $t_1b + t_2b + t_1sa + t_2sa = rb + rsa = rsa + rb$,

so $a \in Z(M)$.

Thus $Z_R(M) = M$ iff $Z_Z(M) = M$ so that M is R-nilpotent of class 1 iff M is nilpotent of class 1. In fact we shall show that R-nilpotence (R-solvability) is equivalent to Z-nilpotence (Z-solvability). The main results depend on the following group-theoretic lemma.

LEMMA 4.1. Let G be a group (written multiplicatively) and let A, B be normal subgroups. Then for every integer n, for all $a_i \in A$, $b_i \in B$

$$\left(\prod_{1}^{n} b_{i} a_{i}\right) \left(\prod_{1}^{n} b_{i}\right)^{-1} \left(\prod_{1}^{n} a_{i}\right)^{-1} \in [A, B].$$

PROOF. First note that for all $g \in G$, $a \in A$, $b \in B$ $g[a, b]g^{-1} = [gag^{-1}, gbg^{-1}] \in [A, B]$. Then for all $a_1 \in A$, $b_1 \in B$

(*)
$$a_1b_1[a, b]a_1^{-1}b_1^{-1} = [a_1, b_1]b_1a_1[a, b](b_1a_1)^{-1} \in [A, B].$$

For n=2,

$$b_1a_1b_2a_2b_2^{-1}b_1^{-1}a_2^{-1}a_1^{-1} = b_1a_1[b_2, a_2][a_2, b_1^{-1}]b_1^{-1}a_1^{-1} \in [A, B].$$

For $n \ge 3$ the result comes from repeated application of (*) and the identity

$$\left(\prod_{1}^{n}b_{i}\right)^{-1}\left(\prod_{1}^{n}a_{i}\right)^{-1}=\left(\prod_{i=n}^{3}b_{i}^{-1}a_{i}^{-1}\left[a_{i},\prod_{i=1}^{2}b_{i}^{-1}\right]\right)b_{2}^{-1}a_{2}^{-1}\left[\prod_{2}^{n}a_{i},b_{1}^{-1}\right]b_{1}^{-1}a_{1}^{-1}.$$

THEOREM 4.2. $[A, B]_R = [A, B]_Z$ if A and B are R-submodules of M.

PROOF. Since $1 \in R$, every generator of $[A, B]_Z$ is in $[A, B]_R$. Conversely if y=r(a+b)-ra-rb is a generator of $[A, B]_R$ and $r=\sum_{i=1}^n s_i$, $s_i \in S$ then

$$y = \sum_{i=1}^{n} (s_i a + s_i b) - \left(\sum_{1}^{n} s_i a\right) - \left(\sum_{1}^{n} s_i b\right) \in [A, B]_{\mathbf{Z}}$$

by the (additive form of the) lemma. Since $[A, B]_Z$ is an R-subgroup in the d.g. case, the result follows.

COROLLARY 1. If A and B are R-submodules of M, $[A, B]_R = [B, A]_R$ and this is an R-submodule of M.

COROLLARY 2. M is R-nilpotent (R-solvable) iff M is Z-nilpotent (Z-solvable).

COROLLARY 3 [3, Theorem 4.4.3]. R abelian and $d.g. \Rightarrow R$ is a ring.

R-solvability can be expressed in terms of an R-composition series as follows. Following [4] we define an ideal P of R to be prime if whenever A, B are ideals such that $AB \subseteq P$ then $A \subseteq P$ or $B \subseteq P$ (here AB refers to the additive group generated by all ab).

PROPOSITION 4.3 [4]. If M is a cyclic simple module, Ann M is a prime ideal.

PROPOSITION 4.4. If M is R-solvable and has a composition series, the series has cyclic factors A_i where Ann A_i is a prime ideal.

PROOF. M has a normal series with central factors. By Theorem 2.3 this can be refined to a composition series with central simple factors i.e. central irreducible factors which are therefore cyclic and so have prime annihilators by 4.3.

We shall now investigate some consequences of R-nilpotence.

Let A be an R-subgroup of M. Define the R-normalizer of A to be $N_R(A) = N(A) = \{x \in M | rx + a - rx \in A \text{ for all } a \in A, r \in R\}.$

PROPOSITION 4.5. (a) N(A) is an R-subgroup of M. (b) N(A) is the largest R-subgroup of M in which A is an R-submodule.

PROOF. (a) Consider, for $x, y \in N(A)$, z=r(x-y)+a-r(x-y) where $r=\sum_{i=1}^{n} s_{i}$, $s_{i} \in S$. By induction on n,

$$z = s_1 x - s_1 y + \left(\sum_{i=1}^n s_i\right)(x - y) + a - \left(\sum_{i=1}^n s_i\right)(x - y) + s_1 y - s_1 x$$

= $s_1 x - s_1 y + a' + s_1 y - s_1 x$, $a' \in A$,

so $z \in A$. Clearly $x \in N(A) \Rightarrow tx \in N(A)$ for all $t \in R$.

(b) A is clearly a normal subgroup of N(A) so it is an R-submodule since M is d.g. If A is an R-submodule of $B \subseteq M$ then, for all $b \in B$, $r \in R$, $rb \in B$; so by the normality of A in B, $rb+a-rb \in B$ for all $a \in A$ and hence $b \in N(A)$, i.e. $B \subseteq N(A)$.

PROPOSITION 4.6. If M is nilpotent and A is an R-subgroup of M then $A \subseteq N(A)$.

PROOF. If k is the largest integer such that $Z_k \subseteq A$, choose $x \in Z_{k+1}$, $x \notin A$. Then for all $a \in A$, $r \in R$, $a + [-a, x, 1, r] = rx + a - rx \in A + Z_k \subseteq A$ so $x \in N(A)$.

COROLLARY. If M is nilpotent, every maximal R-subgroup of M is an R-submodule.

LEMMA 4.7. A cyclic R-module Rm is central iff $R' \subseteq Ann m$.

PROOF. Rm is central iff x+sy=sy+x for all $x, y \in Rm$, $s \in R$ iff (r+st)m=(st+r)m for all $r, s, t \in R$ iff $r+st-(st+r) \in Ann m$ iff $[R, R] \subseteq Ann m$.

Define the Frattini subgroup of M to be

 $F(M) = F_R(M) = \bigcap \{\text{maximal proper } R\text{-subgroups of } M\}$ if any exist = M otherwise.

Thus by universal algebra, F(M) is the set of nongenerators of M.

PROPOSITION 4.8. If $F(M) \supset M'$, every maximal R-subgroup of M is an R-submodule and when $R' \subseteq Ann M$ the converse is true.

PROOF. $F(M) \supset M'$ implies $A \supset M'$ for every maximal R-subgroup A. By Theorem 2.3, A is an R-submodule. Conversely if every maximal R-subgroup A is an R-submodule then M/A is an irreducible R-module so is cyclic. Writing M/A = Ra, $R' \subseteq Ann M \subseteq Ann (M/A) \subseteq Ann a$ implies by the lemma that M/A is central. Thus $A \supset M'$ and as this is true for all maximal R-subgroups A, $F(M) \supset M'$ as required.

THEOREM 4.9. If M is nilpotent and $R' \subseteq Ann M$ then $M' \subseteq F(M)$.

PROOF. If M is nilpotent, every maximal R-subgroup is an R-submodule by the corollary to 4.6 so $M' \subseteq F(M)$ by Proposition 4.8.

REFERENCES

- 1. M. Barr, What is the center? Reports of the Midwest Category Seminar III, Lecture Notes in Math., vol. 106, Springer-Verlag, Berlin and New York, 1969, pp. 1-12.
- 2. J. Beidleman, On near-rings and near-ring modules, Doctoral Thesis, Pennsylvania State University, University Park, Pa., 1964.
- 3. A. Frohlich, Distributively generated near-rings, I. Ideal theory, Proc. London Math. Soc. (3) 8 (1958), 76-94. MR 19, 1156.
- 4. R. Laxton, Prime ideals and the ideal-radical of a distributively generated near-ring, Math. Z. 83 (1964), 8-17. MR 28 #3057.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF NEW BRUNSWICK, FREDERICTON, NEW BRUNSWICK, CANADA