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SOLVABLE  AND   NILPOTENT  NEAR-RING  MODULES1

GORDON   MASON

Abstract. The center of a unital near-ring module nM is

defined, leading to the construction of a lower central series and a

definition of /{-nilpotence. Likewise a suitable definition of com-

mutators yields a derived series and /{-solvability. When (/?, +)

is generated by elements which distribute over M the /{-nilpotence

(/{-solvability) is shown to coincide with the nilpotence (solvability)

of the underlying group. In this case, nilpotence has implications

for /f-normalizers and the Frattini submodule.

1. Introduction. For basic definitions see [2] or [3]. In this paper, by

"near-ring" is meant a right unital near-ring R satisfying x ■ 0=0 for

all x e R. Similarly a (left) near-ring module RM over R will always be

assumed to be unital. In general a subgroup A of {M, +) is called an

/{-subgroup if RAç^A, and A is an Ä-submoduIe if it is a normal /{-sub-

group satisfying

(SM) For all r e R, m e M, a e A,   r(m + a) — rm e A.

In the unital case, a subgroup with property (SM) is in fact a normal

subgroup.

Isomorphism theorem [2].    Let f: M--M' be an R-epimorphism.

(i) If A is an R-subgroup (R-submodule) of M, then f{A) is an R-

subgroup {R-submodule) of M'.

(ii) If A' is an R-subgroup {R-submodule) of M' then f~l{A) is an

R-subgroup {R-submodule) of M.

(hi) If A is an R-subgroup {R-submodule) of M containing kerf

f-*{f{A))=A.
A normal series for M is a finite series M=> Mr^>- ■ ■^M,l = 0 where

each M¡ is an R-submodule of M{_v Any two normal series for M have

equivalent refinements. M is called simple if it has no proper A'-submodules

and irreducible if it has no proper Tî-subgroups. A composition series is

a normal series without repetition whose factors are all simple. The

Jordan-Holder theorem holds.
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2. Nilpotence. Define the center of RM to be Z{M)=ZR{M) =

{a e M\r(b+sa)=rsa+rb for all b e M, r, seR}. Taking r=s=l we

see ZR(M)^ZZ(M). For x,yeM and r,seR define [y, x,r,s] =

r(y+sx)—ry—rsx and define the upper central series inductively by

Zo=0, Z1=Z{M), Z{={x e M\[y, x, r, s] eZH for all y e M, r, s e Ä}.

Clearly these sets satisfy Z, s Z,,, for all /.3 J      i i+l

Theorem 2.1.   Z, « an R-submodule of M for all i and ZijZi_l=

ziM/z^y

Proof. Inductively, assume Z{_x is an Ä-submodule. We first show

that Z, is a subgroup of M. If x, x e Zi then there exist z,- e Z¡_x for

y'=l, 2, • • • , 7 suchthat

r(y + s(x — x')) = r(y + zx + s(— \)x + sx)

= z2 4- rsx + r(j + Zj + ¿(—I)*')

= z2 + rac + z3 + rj(— l)x' + r(y + zx)

= z2 + rs* + z3 + r.s(—l)x' + zt + ry

= z5 + "x + rs(— l)x' + ry

= z5 + [z6 + rj(-l)x' + rsx] + ry

= z5 + z6 + z7 + «(x — x') + ry.

Hence r(y+s(x—x'))—ry—rs(x—x) eZw as required. Moreover Zt is

clearly an /î-subgroup. Also Zx has property (SM) since, if aeZ(M),

r e R and b e M, then r(b+a)—rb=ra+rb — rb = ra e Z(M). Now suppose

inductively that Zi_llZi_2=Z(M/Zi_2). Then xeZ, iff [j>, x, r, s] eZH

iff [j+Z¿_1; x+Z,^, r, í]=Z¿_1 for all ji|ZH e M/Z¡_,. Hence

ZilZi_1=Z(M/Zi_1) as claimed, and this shows also that ZijZi_1 is an

Ä-submodule of M/Z^. By the isomorphism theorem therefore, Z, is an

/?-submodule of M.

Remark. An easy calculation shows that Z{M) is the categorical

center as defined in [1].

Define M to be Ä-nilpotent of class n if n is the least integer such that

Zn=M.
Writing [y, x, r, l]=[y, x, r] we define the Ä-commutator of two

.K-subgroups A and B to be the Ä-subgroup [A, B]R (or [A, B]) generated

by {[a, b, r]\a e A, b e B, r e R}.

Proposition 2.2. If B is an R-submodule of A^M, then [A, B] is an

R-submodule of A.

Proof. By definition, [A,B] is an Ä-subgroup of M. Since B is an

Ä-submodule of A, r(a+b) — raeB so  [a, b, r] gB^A and  [A,B] is
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an ^-subgroup of A. Finally

r{a + [au b, s]) — ra = r{a + bj) — ra,    where [au b,s] = bíG B

= r{a + b^) — ra — rb1 + rb^

= [atbur] +r[altb,s]e[A,B]

for all a e A, r e R so the condition (SM) holds.

Define M'R=[M, M]R. By the proposition, M' is an /î-submodule of

M, and in fact R' is an ideal of R. Define M to be central if M=ZR{M)

(iff M'=0).

Theorem 2.3. (a) M/M' is central and if A is an R-submodule of M,

M¡A is central iff A^ M'.
(b) If N is an R-subgroup of M and N^ M', then N is an R-submodule.

Proof, (a) A^M' iff [x,y,r]eA for all r e ä, x,yeM iff

[x+A,y + A,r]=0in M\A for all r e R, x,ye Miff [MjA, M//I]=0.
(b) N/M' is an /{-subgroup of M\M' by the isomorphism theorem and

M\M' is central. Therefore N/M' is an /{-submodule of MjM' and so N

is an /{-submodule of M.

Remark 1. Since M is unital we see M is central iff it is abelian and

R is distributive over M.

Remark 2. In general [M, M]Z^[M, M]R. For example if G is

an abelian group, G is a module over the near-ring /? = {maps/:G—*G|

/(0)=0}. Clearly [G, G]z=0, but [G, G]R=D{G) the distributor sub-

module which is nonzero as R is not distributive over G.

Define as usual Ann M={r e R\rM=0}. Then Ann M is an ideal in R.

If Ann M=0, call M faithful.

Proposition 2.4. If there exists a faithful central R-module M, then

R is a ring.

Proof. Since {r+s)m=rm+sm=sm + rm = {s+r)m for all me M

and similarly r{s+t) — {rs+rt) e Ann A/ = 0, therefore R is abelian and dis-

tributive and so is a ring.

Define the lower central series inductively by Z{0) = M, ZU) =

[M, Zu~l)]R. By Proposition 2.2 each ZU) is an Ä-submodule of M.

Theorem 2.5. M is R-nilpotent of class n iff n is the least integer such

thatZin>=0.

Proof. We first prove ZU)^Zn_i. Inductively, since Zm=Zn = M,

supposeZ'^'EZ^^.ThenZ^^ [M, Z„_m]2 [M, Z<<-1>]=Z<i>. Hence
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Z|n|cZo=0. Moreover n is minimal for if Z("-ll = 0 then using the series

2«"-i)c...C2io) we can show as above that Z'^çZ,.,^. Therefore

M=Z<0)£Z„_1 which contradicts the minimality of « in the upper central

series. The converse is proved similarly.

3. Solvability.    Define the derived series for M inductively by Ma,=

[M,M]R,  A/(i»=[Af(!-1>, M"-»}R,  and define  M to be Ä-solvable  if

A/(n,=0 for some n. Since inductively M(l)<=Z(')=>Af(i+1>=[M('), M(î»]Ç

[M, Z<¿)]=Z(':+1) it follows that if M is Ä-nilpotent, it is Ä-solvable.

It is clear from the definitions that if M is /{-nilpotent (Ä-solvable)

it is nilpotent (solvable) as a group. In fact iff:S->-R is a near-ring homo-

morphism and RM is canonically an ^-module then /?-nilpotence (R-

solvability) implies S-nilpotence (^-solvability).

Theorem 3.1. M is R-solvable iff M has a normal series whose factors

are all central.

Proof. If M is /{-solvable then A/<"> = 0, so the series {Min} is a

normal series in view of Proposition 2.2. Moreover each factor is central

by Theorem 2.3. Conversely, suppose M^M^- • ■^>Mn—0 is a normal

series for which MJMi+1 is central for all /'. By induction if MU)<=-MU

then A/(i+1>=[A/(<>, A/<'>]<= [Af,-, M,]<=-Mi+1 by Theorem 2.3. Therefore

A/„=0^M("> = 0.

Proposition 3.2. (a) Every R-subgroup A and every factor module

M\B of an R-solvable module M is R-solvable.

(b) If B is an R-solvable R-submodule of M and M\B is R-solvable

then M is R-solvable.

Proof, (a) The canonical monomorphism a:/I—>-M and epimorphism

ß-.M^-M/B induce respectively monomorphisms «•*':A^)~*-Miki and

epimorphisms ß{k): M™-+(M¡B)m.

(b) Given 0->-Ä->-aA/->-'rA//5->-0, (M/Byk)=0 implies -n restricts to

7r(t):Af(*')_^0soA/"'')'=ker7T = Ima. Sinceß"",=0, (A/(A >)""> = Af(i+m)=0.

4. The distributively generated case. In this section we shall assume that

R is distributively generated (d.g.) over M, by which we mean that there

exists a multiplicative semigroup S^R such that s(m+n) = sm+sn for

all s e 5, m, ne M and such that S additively generates R. In this case

we note that s(—m)——sm for all ä e S, m e M and also a normal R-

subgroup of M is an Ä-submodule. Clearly ZR(M)^{a\b+sa=sa + b

for all 5 e R, b e M} and, when R is d.g. over M, equality holds. For

suppose r e R and r=t1 + t2 where the /, are distributive over M (the proof

goes inductively for r = 2í=i'i)- Then if b+sa=sa+b for all b e M,
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í e R we have

r{b + sa) = tA[b + sa) + t2{b + sa) = txb + ttsa + t2b + t2sa

= ttb + t2b + tYsa + t2sa = rb + rsa = rsa + rb,

so a e Z(M).

Thus ZR{M)=M iff ZZ(A/) = M so that M is Ä-nilpotent of class 1 iff

M is nilpotent of class 1. In fact we shall show that /{-nilpotence {R-

solvability) is equivalent to Z-nilpotence (Z-solvability). The main results

depend on the following group-theoretic lemma.

Lemma 4.1. Let G be a group {written multiplicatively) and let A, B

be normal subgroups. Then for every integer n,for all at e A, b¿£ B

(Ub^^b^lfla^e^B].

Proof. First note that for all geG, aeA, beB g[a,b]g~1 =

[gag-1, gbg'1] e [A, B]. Then for all ax e A, bl e B

{*) aMa, frKV = [«». MMili- ¿KMi)"1 £ [A, B\.

For n = 2,

b^^a^b^a^ál1 = Vif.^ a2][a2, b^b^a^1 e [A, B].

Forn_3 the result comes from repeated application of (*) and the identity

¿rV1-

Theorem 4.2.    [A, B]R= [A, B]z if A and B are R-submodules of M.

Proof. Since 1 e R, every generator of [A, B]z is in [A, B]R. Con-

versely if y=r{a+b) — ra—rb is a generator of [A, B]R and r=^" s0

s, e S then

y

n i n \ / n \

= 2 {sfl + Sib) - y Sia) - (y sM e [a, b\
i=\ \   1 ' ^   1 '

by the (additive form of the) lemma. Since [A, B]z is an /{-subgroup in

the d.g. case, the result follows.

Corollary 1.    If A and B are R-submodules of M, [A, B]R=[B, A]R

and this is an R-submodule of M.

Corollary 2.    M  is  R-nilpotent  {R-solvable)  iff M is Z-nilpotent

{Z-solvable).

Corollary 3 [3, Theorem 4.4.3].    R abelian and d.g.^>R is a ring.
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/{-solvability can be expressed in terms of an /{-composition series as

follows. Following [4] we define an ideal P of R to be prime if whenever

A, Bare ideals such that A B £ P then A Ç P or B S p (here A B refers to the

additive group generated by all ab).

Proposition 4.3 [4]. If M is a cyclic simple module, Ann M is a prime

ideal.

Proposition 4.4. If M is R-solvable and has a composition series, the

series has cyclic factors A{ where Ann At is a prime ideal.

Proof. M has a normal series with central factors. By Theorem 2.3

this can be refined to a composition series with central simple factors

i.e. central irreducible factors which are therefore cyclic and so have prime

annihilators by 4.3.

We shall now investigate some consequences of /{-nilpotence.

Let A be an /{-subgroup of M. Define the /{-normalizer of A to be

NR{A)=N{A) = {x e M\rx+a-rx e A for all a e A, r e R}.

Proposition 4.5. (a) N{A) is an R-subgroup of M. (b) N{A) is the

largest R-subgroup of M in which A is an R-submodule.

Proof, (a) Consider, for x, y e N{A), z—r{x—y)+a—r{x—y) where

r= 2" st, í¿ e S. By induction on n,

z = sxx - s^y + |2 sf (x- y) + a- I ]T sA {x - y) + sty - s*x

= slX - s,y + a' + s,y - s,x,       a' e A,

so z 6 A. Clearly x e N{A)=>tx e N{A) for all t e R.

(b) A is clearly a normal subgroup of N{A) so it is an /{-submodule

since M is d.g. If A is an /{-submodule of B<= M then, for all b e B,

r e R, rb e B; so by the normality of A in B, rb+a — rb s B for all a e A

and hence b e N{A), i.e. B^N{A).

Proposition 4.6. If M is nilpotent and A is an R-subgroup of M then

A^N{A).

Proof. If k is the largest integer such that Zk<=A, choose x eZk+1,

x $ A. Then for all a e A,r g R, a+[—a, x, 1, r]=rx+a—rx e A+Zk<=A

so x e iV(yl).

Corollary. If M is nilpotent, every maximal R-subgroup of M is

an R-submodule.

Lemma 4.7.    A cyclic R-module Rm is central iff R <= Ann m.
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Proof. Rm is central iff x+sy=sy+x for all x,yeRm, s e R iff

(r+st)m = (st+r)m for all r,s,teR iff r+st—(st+r) e Ann m iff

[R, R]^ Ann m.

Define the Frattini subgroup of M to be

F(M) = FR(M) = f] {maximal proper /î-subgroups of A/}    if any exist

= M   otherwise.

Thus by universal algebra, F(M) is the set of nongenerators of M.

Proposition 4.8. If F(M)^>M', every maximal R-subgroup of M is

an R-submodule and when /?'<= Ann M the converse is true.

Proof. F(M)^M' implies /!=>M' for every maximal Ä-subgroup A.

By Theorem 2.3, A is an /?-submodule. Conversely if every maximal

/{-subgroup A is an Ä-submodule then M\A is an irreducible Ä-module

so is cyclic. Writing M/A = Ra, /?'<= Ann A/c Ann (A///i)<= Ann a implies

by the lemma that MjA is central. Thus A => M' and as this is true for all

maximal /^-subgroups A, F(A/)=>A/' as required.

Theorem 4.9.    If M is nilpotent and R'c Ann M then M'^F(M).

Proof. If M is nilpotent, every maximal Ä-subgroup is an R-

submodule by the corollary to 4.6 so M'^F(M) by Proposition 4.8.
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