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ON PRODUCTS OF POWERS IN GROUPS

ROGER LYNDON,! THOMAS McDONOUGH AND MORRIS NEWMAN

ABSTRACT. In this note we show that a product of Nth powersin
a group cannot in general be expressed as a product of fewer Nth
powers. This extends a result of Lyndon and Newman [1].

THEOREM. Let F be a free group of rank n with basis xy, - * * , X,, let
Uy, -+, u, be elements of F, and let N be an integer greater than 1. If

(*) va...x:'y:uiv...uz’

then m=n.

For the proof it will suffice to exhibit a group G and elements x;, - -+ , X,
in G such that, if u, - - -, u,, are any elements of G satisfying (+), then
mzn.

Choose a prime p dividing N and write N=¢M, where g=p° for some
e=1 and p does not divide M. Let P be the ring of polynomials over
GF(p) in noncommuting indeterminates X, - - -, X,,. Let ¢ be the ideal
in P generated by X, - -+ , X, and let R=P/_#+; we shall write X; also
for the image of X, in R. Let G be the group of units in R. (Thus G is a
finite group of exponent pq.) The elements x;=1+ X belong to G, since
they have inverses x;'=1—X;+X7—- - -+(—1)°X{.

Now x?=(1+X)’=1+X?, whence x¥=xM=(14+XHM=1+4+Mx{. It
follows that

(1) x¥ooxN =14 MY 2
=1
Letu,, -, u, bein G. We may write u;=1+ >, a;;x;+ D; where D; is
in #2 Then
uj=(1+ Z“jixi + D) =1+ (Z «;: X; + D)
=1+ (z a; X)) =1+ z LITRRR ITP CRRRD O
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summed over all iy, - - -, i, such that 1=i,, - - -, i,<n. Therefore u{™=
1+M Z ST aj,'qul et Xiq' It follows that

@ wul=14 M D Zam- raXa o X

sin J=
Assume that () holds. Equating the coefficients of X7 for each i in (1)
and (2) gives
3) M=M3d, (1=izn).
i=1

Equating the coefficients of X77'X;, for izh gives

4) O—MZoc"“ o (=i, h=n;is##h).

i=1
Since p does not divide M, we may divide (3) and (4) through by M,
obtaining

(3) D=1 (1=iZn),
j
4) Doafla, =0 (1=i,h=n;is#h).
j

Let A=(aJ;") and B=(«;;), m-by-n matrices over GF(p). Then (3') and (4')
assert that
(%) ATB =1,

where A7 is the transpose of A and I, is the n-by-n identity matrix. It
follows that n=rank(/,)<rank(B)=m.
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