ON PRODUCTS OF POWERS IN GROUPS

ROGER LYNDON, ${ }^{1}$ THOMAS McDONOUGH AND MORRIS NEWMAN

Abstract

In this note we show that a product of N th powers in a group cannot in general be expressed as a product of fewer N th powers. This extends a result of Lyndon and Newman [1].

Theorem. Let F be a free group of rank n with basis x_{1}, \cdots, x_{n}, let u_{1}, \cdots, u_{m} be elements of F, and let N be an integer greater than 1 . If

$$
\begin{equation*}
x_{1}^{N} \cdots x_{n}^{N}=u_{1}^{N} \cdots u_{m}^{N} \tag{*}
\end{equation*}
$$

then $m \geqq n$.
For the proof it will suffice to exhibit a group G and elements x_{1}, \cdots, x_{n} in G such that, if u_{1}, \cdots, u_{m} are any elements of G satisfying (*), then $m \geqq n$.

Choose a prime p dividing N and write $N=q M$, where $q=p^{e}$ for some $e \geqq 1$ and p does not divide M. Let P be the ring of polynomials over $G F(p)$ in noncommuting indeterminates X_{1}, \cdots, X_{n}. Let \mathscr{J} be the ideal in P generated by X_{1}, \cdots, X_{n}, and let $R=P / \mathscr{J}^{q+1}$; we shall write X_{i} also for the image of X_{i} in R. Let G be the group of units in R. (Thus G is a finite group of exponent $p q$.) The elements $x_{i}=1+X_{i}$ belong to G, since they have inverses $x_{i}^{-1}=1-X_{i}+X_{i}^{2}-\cdots+(-1)^{q} X_{i}^{q}$.

Now $x_{i}^{q}=\left(1+X_{i}\right)^{q}=1+X_{i}^{q}$, whence $x_{i}^{N}=x_{i}^{q M}=\left(1+X_{i}^{q}\right)^{M}=1+M x_{i}^{q}$. It follows that

$$
\begin{equation*}
x_{1}^{N} \cdots x_{n}^{N}=1+M \sum_{i=1}^{n} x_{i}^{q} . \tag{1}
\end{equation*}
$$

Let u_{1}, \cdots, u_{m} be in G. We may write $u_{j}=1+\sum_{i} \alpha_{j i} x_{i}+D_{j}$ where D_{j} is in \mathscr{J}^{2}. Then

$$
\begin{aligned}
u_{j}^{q} & =\left(1+\sum \alpha_{j i} X_{i}+D_{j}\right)^{q}=1+\left(\sum \alpha_{j i} X_{i}+D_{j}\right)^{q} \\
& =1+\left(\sum \alpha_{j i} X_{i}\right)^{q}=1+\sum \alpha_{j i_{1}} \cdots \alpha_{j i_{q}} X_{i_{1}} \cdots X_{i q}
\end{aligned}
$$

[^0](c) American Mathematical Society 1973
summed over all i_{1}, \cdots, i_{q} such that $1 \leqq i_{1}, \cdots, i_{q} \leqq n$. Therefore $u_{j}^{q M}=$ $1+M \sum \alpha_{j i_{1}} \cdots \alpha_{j i_{q}} X_{i_{1}} \cdots X_{i_{q}}$. It follows that
\[

$$
\begin{equation*}
u_{1}^{N} \cdots u_{m}^{N}=1+M \sum_{i_{1}, \cdots, i_{n}} \sum_{j=1}^{m} \alpha_{j i_{1}} \cdots \alpha_{j i_{Q}} X_{i_{1}} \cdots X_{i_{q}} \tag{2}
\end{equation*}
$$

\]

Assume that (*) holds. Equating the coefficients of X_{i}^{q} for each i in (1) and (2) gives

$$
\begin{equation*}
M=M \sum_{j=1}^{m} \alpha_{j i}^{a} \quad(1 \leqq i \leqq n) \tag{3}
\end{equation*}
$$

Equating the coefficients of $X_{i}^{q-1} X_{h}$ for $i \neq h$ gives

$$
\begin{equation*}
0=M \sum_{j=1}^{m} \alpha_{j i}^{q-1} \alpha_{j h} \quad(1 \leqq i, h \leqq n ; i \neq h) \tag{4}
\end{equation*}
$$

Since p does not divide M, we may divide (3) and (4) through by M, obtaining

$$
\begin{gather*}
\sum_{j} \alpha_{j i}^{q}=1 \\
\sum_{j} \alpha_{j i}^{q-1} \alpha_{j h}=0 \quad(1 \leqq i \leqq n) \\
\hline i \leqq h \leqq n ; i \neq h)
\end{gather*}
$$

Let $A=\left(\alpha_{j i}^{q-1}\right)$ and $B=\left(\alpha_{j i}\right), m$-by- n matrices over $G F(p)$. Then ($\left.3^{\prime}\right)$ and ($\left.4^{\prime}\right)$ assert that

$$
\begin{equation*}
A^{T} B=I_{n} \tag{5}
\end{equation*}
$$

where A^{T} is the transpose of A and I_{n} is the n-by- n identity matrix. It follows that $n=\operatorname{rank}\left(I_{n}\right) \leqq \operatorname{rank}(B) \leqq m$.

Reference

1. Roger C. Lyndon and Morris Newman, Commutators as products of squares, Proc. Amer. Math. Soc. 39 (1973), 267-272.

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104 (Current address of Roger Lyndon)

Départment de Mathematiques, Université de Montpellier, 34 Montpellier, France

Department of Mathematics, University College of Wales, Aberystwyth, Cardiganshire, Wales (Current address of Thomas McDonough)

National Bureau of Standards, Washington, D.C. 20234 (Current address of Morris Newman)

[^0]: Received by the editors January 15, 1973.
 AMS (MOS) subject classifications (1970). Primary 20F10, 20 E 05.
 ${ }^{1}$ The author wishes to acknowledge the support of the National Science Foundation, and also the hospitality of the University of Birmingham.

