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ON PRODUCTS OF POWERS IN GROUPS

ROGER  LYNDON,1   THOMAS  McDONOUGH  AND   MORRIS  NEWMAN

Abstract. In this note we show that a product of Ath powers in

a group cannot in general be expressed as a product of fewer /Vth

powers. This extends a result of Lyndon and Newman [1].

Theorem.    Let F be a free group of rank n with basis xx, • • • , xn, let

«!, • ■ ■ , um be elements of F, and let N be an integer greater than 1. If

0) xf • • • x% = «f • • • um,

then m>n.

N N N N

For the proof it will suffice to exhibit a group G and elements xx, • ■ ■ , xn

in G such that, if ux, ■ ■ • , um are any elements of G satisfying (*), then

m_«.

Choose a prime p dividing N and write N=qM, where q=pe for some

e^l and p does not divide M. Let P be the ring of polynomials over

GF(p) in noncommuting indeterminates Xx, • • • , Xn. Let ß be the ideal

in F generated by Xlt • • • , Xn, and let R=P¡rf9+1; we shall write Xt also

for the image of X¡ in R. Let G be the group of units in R. (Thus G is a

finite group of exponent pq.) The elements xi=l+Xi belong to G, since

they have inverses xTl=l-Xi + X2-+ (—1)°^°.

Now xï^^+xy^l+Xf, whence xf =x"iM=(l+X?)M=l+Mxl It

follows that

(1) x?---x?= 1 +M%x"i.
! = 1

Let ux, ■ ■ ■ , um be in G. We may write «, = 1 + 2. *jiX(+Dj where /), is

in f2. Then

«J » (1 + 2 ««X, + DJ = 1 + (2 «iA + £>;)*

= i + (2 <*,<*,)« = i + 2K«. ■ ■ " «A ■ • • *>v
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summed over all ix, • • •, i8 such that l^ix, • • •, iQ^n. Therefore uajM=

l+M 2 a«, • ' ' *« -X*, ' • • A',■ . It follows that

(2)       «iv • • • M;y = i + m 2 2 «*. • • • «*** • • • **•
11. •■.in   i=l

Assume that (*) holds. Equating the coefficients of X' for each i in (1)

and (2) gives

(3) M = M ][<        (1 ^ i < n).

Equating the coefficients of X"i~1Xh for iV« gives

(4) 0 = M 2 o£*«»       (1 ̂  /, n < n; ¿ * n).

Since p does not divide M, we may divide (3) and (4) through by M,

obtaining

0') 2^=1        ü^i,^»)>

(4') 2a"Ia^ = °        (l^Uh^n;i*h).
i

Let /4 = (a3V1) and 5= (a,,), m-by-n matrices over GF(p). Then (3') and (4')

assert that

(5) ATB = In

where AT is the transpose of A and In is the n-by-n identity matrix. It

follows that « = rank(/„)^rank(Z3)^m.
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