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CLASSIFICATION  OF  BOUNDED  SOLUTIONS
OF A LINEAR  NONHOMOGENEOUS

DIFFERENTIAL  EQUATION1

THOMAS   G.   HALLAM

Abstract. An elementary criterion, depending only upon the

initial data of a solution, is formulated to determine the bounded-

ness of solutions of a nonhomogeneous linear system of ordinary

differential equations. The associated homogeneous linear differ-

ential equation is required to be either conditionally stable or

conditionally asymptotically stable.

1. Introduction. Substantive information for linear perturbation

problems includes a knowledge of the behavior of the solutions of the non-

homogeneous linear differential equation

(1) x'= A(t)x+f(t)

whenever the associated homogeneous system

(2) y  = A(t)y

possesses a prescribed property. In this note, we assume that the homo-

geneous equation (2) possesses a certain conditional stability property;

then, a classification of the bounded solutions of (1) is obtained. The

boundedness criterion is phrased solely in terms of the initial value of the

solution.

2. Hypotheses for (1) and (2). In equations (1) and (2), x, y are ele-

ments in an «-dimensional vector space X; A(t) is a continuous nxn

matrix defined on R=(—co, oo); and, fe C[R, X]. Let Y(t) denote the

fundamental matrix of (1) that satisfies the condition F(0) = Z„, Z„ is the

nxn identity matrix. The symbol |-| denotes a norm on X as well as a

corresponding (consistent) matrix norm.
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3. The conditional asymptotic stability case. A fundamental require-

ment for (2) in this section is

(H.l) Let there exist supplementary projections P0, P_x, Px, Px and

constants K, q with K>0 and l^q<co such that

If.mtyp^Y-^sW ds
1/i

I
I

+
+

Y(t)PaoY-1(s)\" ds

Y(t)Px Y-\sWds

CjYOWoY-XsW ds

jt   \Y(t)PxY^

i/«

(s)r ds
Un

<K, teR;

1/3

< K, t e R+ = [0, co);

im
<; K,       teR_ = (-oo,0].

A complementary requirement on (1) is

(H.2) The nonhomogeneous term/is in LP(R) where l//>+l/<7=l. The

norm of/e LV(R) is denoted by |/|„.

Theorem 1.    Let conditions (H.l) and (H.2) be satisfied for equations (1)

and (2). Then, the following conclusions hold:

(i) A solution x=x(t) of (I) is bounded on R+ if and only if

f«
p,x(0) = -      PxY'\s)f(s)ds;    and

JO

(3) .«
P7Bx(0) = -I    PJ-'^sJis.

(ii) A solution x=x(t) of (2) is bounded on R_ if and only if

P_,x(0) = j    P_iY-1(s)/(s) ds;   and

Pa>x(0) = C P^Y-Hs)f(s)ds.
J—00

(4)

(iii) A solution x = x(t) of (2) is bounded on R if and only if both (3) and

(A) hold.

Proof.    The hypothesis (H.l) used in conjunction with the Lemmas of

[4] (also see R. Conti [1] and W. A. Goppel [2, pp. 68, 74]) imply

(5)

(6)

lim |y(í)P„| =0;
|*t—»00

lim I Y(t)P_x\ = 0    and

lim sup \Y(t)P_xÇ| = co    provided P_^ # 0;
(-»-00
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(7)

(8)

lim |Y(0P|i = 0    and
t-*—<x¡

lim sup |F(í)Z\f| = QO    provided P,f # 0;
¿-»GO

lim sup \Y(t)PxÇ| = oo    provided Pœ£ jí 0.

It follows from (5), (6), and (7) that there is a constant M>0 such that

I Y(t)P-i I + I Y(t)P01 ¿g M,       í e P+ ;    and

|y(f)P,| + |F(i)P9|<M,        ?£/?_.

Proceeding formally, we use the variation of parameters formula to

obtain for a solution x of (1) valid on R+,

(9)

x(t) = Y(t)x(Q) + jj(t)Y~Xs)f(s) ds

= Y(t)[P0 + P_, + P, + PJ.x(O) + P   Y(t)P^Y~\s)f(s) ds
J — CO

ÍÍ ."GO
( rcop.r^aVia) í/s -J( f(í)[Pi + PJY-\&)m ds

/•GO

Y(t)P_1Y~\s)f(s) ds,       teR+.1
For ? e R , we have

x(0 = y(r)[p0 + p., + p, + pœ]x(0)

J-00

+JViOPoF-^/W ds - p y(i)J»ir-W<») rfs

/»0 /»oo

-    y(f )[p_! + p j y-WM <fe +    y(OPr y-!(s)/(s) <fc.
J-oo JO

It is a direct consequence of Holder's inequality, hypotheses (H.l) and

(H.2) that each of the above integrals, with the exception of the last ones,

in (9) and (10) is well defined. To verify that the last integrals are also

well defined, we evaluate an equality in (H.l) at / = 0 to obtain

(ID
fO -j \(q        r /•co

\P^Y-l(s)\" ds      + \PlY-\s)\" ds
J—00 \_J0

Va
< K.
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From (11) and (H.2), we have

(12)
í

Y(t)P^xY-\s)f(s)ds

- po -|l/<r

IW-J \P-iY-\sW ds      \f\PÚMK\f\v.
_J—°0

The same bound also holds for the last integral in (10); hence, x=x(t)

is well defined. A direct calculation shows that the function x=x(t) with

domain R defined by (9) for t e R+ and by (10) for t e R_is the solution

of (1) that passes through the initial position x(0).

We first verify that assertion (i) holds. Since x is given by (9) for / e R+,

an application of Holder's inequality, conditions (H.l), (H.2) and in-

equality (12) leads to

(13)
x(t)- Y(t)[Px + Px] x(0) + J. ̂(s)f(s) ds

^ M\[P_X + P0]x(0)| + (2 + M)K |/|P,       t e R+.

From (13), we note that the statement—x(t) is bounded on R+—is equiv-

alent to the statement—

(14) noi^i + Poo]x(0) +
/*00

(s)f(s) ds

x(t) - Y(t)[P_x + PJ

is bounded on R+. Equations (7) and (8) show that the expression in (14)

is bounded on R+ if and only if (3) holds; this proves (i).

Conclusion (ii) is verified in an analogous fashion using equation (10).

The analogue of inequality (13) is

r°    , i
x(0) -       Y-\s)f(s) ds

J—°° J

^M\[PX + P0]x(0)| + (2 + M)K I/I,,        ( 6 R_.

This inequality coupled with equations (6) and (8) leads to (ii).

The assertion (iii) is an immediate consequence of (i) and (ii).

Remark 1. As a corollary to (iii), we find that a necessary condition

for (2) to possess a solution that is bounded on R is that the forcing

function / satisfy the equation

(15)
t

PxY-\s)f(s)ds = 0.

If it is known that (2) has a bounded solution for every fe V (see [1] for

this type of result on R+) then, from (15), we have PX = Q. This extends a

recent result of D. L. Lovelady [6] who considered the case/7= co.
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Remark 2. If the conditional asymptotic stability hypothesis (H.l) is

replaced by the corresponding conditional stability analogue then it is no

longer necessary, that an L°°-decomposition of the solution space is

effected. However, Theorem 1 still holds if it is assumed that (H.l) and

(H.2) are replaced by the corresponding requirements in Z.00 and Z,1

respectively and, in addition, that

lim sup |y(f)P_if I = oo    provided P_,| ^ 0,
f-»— 00

lim sup \Y(t)P^\ = co    provided Pjf ^ 0,    and
Í-* CO

lim sup | F(r)P«,f I = oo    provided Pœf ?* 0.
I«!*»«

With these assumptions, the proof parallels that of the case l^<7<oo.

4. Concluding remarks. The projection Px has not been frequently

utilized in connection with perturbation problems. Most research efforts

in this direction have been devoted to finding bounded solutions of dif-

ferential equations; hence, Px has been purposefully neglected.

In [5], a discussion of the unbounded solutions of a functional per-

turbation problem is presented under conditions where Pœ need not be

zero. A different integral equation representation and hypothesis on Pœ is

used there.

Information about the behavior of the solutions of (2) is necessary

before the above theorems can be applied. J. Macki and J. Muldowney

[7] discuss the bounded and unbounded solutions of (2). Other infor-

mation about the bounded solutions of (2) can be found in [3].

We conclude this note with a simple but illustrative example. Let the

vector y be given by y=col(yx, y2, y3, y4) and the matrix A be given by

y4(r)=diag(—2r, —1, l,2t). The fundamental matrix Y of this system (2)

with y(0)=/4 is Y(t)=diag(e~'2, e~l', e*, e*2). The projections P, of con-

dition (H.l) are taken to be

P_, = diag(0, 1, 0, 0);        P0 = diag(l, 0, 0, 0);

P, = diag(0, 0, 1, 0);       Pœ = diag(0, 0, 0, 1).

The matrices Y(t)PiY~1(s) are given by

Y(t)P^Y-\s) = diagiO, exp[s - r], 0, 0);

y(i)PoF_1(5) = diag(exp[S2 - i2], 0, 0, 0);

y(0Pir~l(s) = diag(0, 0, exp[i - s], 0);

yCOP.y-1^) = diag(0, 0, 0, exp[i2 - s2}).
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The hypothesis (H.l) is satisfied for<7=l. Thus, iff=col(fx,f2,f3,f4) is
bounded and continuous on R, then Theorem 1 leads to the following

criteria for the determination of the boundedness of solutions of (1).

A solution x(t)=co\(xx(t), x2(t), x3(t), Xi(t)) of (1) is bounded on R+

if and only if x3(0)=-J000 e~%(s)ds and x^O)^-^ e~%(s)ds. A

solution x is bounded on /?_ if and only if x,(0)=Jü.oo e"f2(s)ds and

*<P)-£. «-■%(*)*.
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