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SEMIGROUPS WITH POSITIVE DEFINITE STRUCTURE

PARFENY   P.   SAWOROTNOW

Abstract. Let G be a semigroup with the identity 1 and an

involution x-^-x*. One can define a complex-valued and an H*-

algebra valued positive definite function on G in the obvious way.

Assume that for each x E G there exists a positive number Lx such

that q(x*x)^Lrq(\) for each complex positive definite function on

G. It is shown that each ZZ*-algebra valued positive definite function

on G is of the form p(x)=(f, Txf) for some representation T of G

on a Hubert module H and f'E H. Also there is an analogue of

Bochner theorem for G.

1. In making a comparison between representation theories of groups

and algebras one can observe certain similarities between these two

theories. In both cases there is a correspondence between representations

and certain types of positive definite functions [8], [10]. Also there is an

analogue of Bochner theorem [9], [11] in each case. This observation

suggests that there is a more general unifying theory which generalizes

both the theory of representations of groups and the theory of represen-

tations of algebras.

The intent of this note is to present theories of this kind.

2. Let G be a semigroup with identity 1 and an involution x-*x* (it

has the property that 1* = 1 and x**=x, (xy)*=y*x* for all x,yEG).

A complex-valued function q on G is said to be positive definite if

2, j¡XiXjq(xfxj)'^.0 for each pair {Xx, X2, ■ ■ ■ , Xn}, {xx, • • ■ , xn} of finite

sets of complex-numbers and members of G respectively. It is strictly

positive definite if the equality holds only when XX = X2=- ■ - = Xn = 0.

Definition 1. Assume that the family Q of complex positive definite

functions on G is not empty. Then G is said to have a positive definite

structure if for each x B G there exists a positive number Lx such that

q(x*x)^Lxq(l) for all q e Q (note that q(x*x)^.0). The ordered pair

(G, Q) will be called "semigroup with positive definite structure".

Example 1. Let G be an abstract group (or a topological group) such

that the set Q of positive definite functions on G is not empty (different

examples of such groups can be found on pp. 280-281  of [2]). Then
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(G, Q) is a semigroup with positive definite structure if we set x* = x~*

(in this case q(x*x)=q(l) for all x e G).

Now let A be a proper //""-algebra [1] and let r(A) = {xy\x, y e A}

be its trace-class [12]. A mappingp:G—>-T(A) is called an ^-valued positive

definite function on G if ¿(tj a*p(xfxj)aj^.O for all subsets {ax, a2, ■ ■ ■ , an}

of A and {xx, • • • , rjcg, As in the complex case, p is strictly positive

definite if 2i.< û*/K.v*x,)û;,>0 except for the trivial case.

Remark. Above we are assuming that the range of the function p is

a subset of t(A). This assumption is needed in the proof of Theorem 1

below to verify that p(x) = (f0, Txf0) (see [8, pp. 147-148]). However

it is possible that this assumption could be derived from the other prop-

erties of the positive definite function p and we need only to assume that

p(x) e A for each x. We leave this as an open problem.

We define a ^representation of G to be a mapping x-*Tx of G into

bounded /1-linear operators on a Hubert module such that F, = /,

TX. = T* and Txy — TxTy for all x,yeG. The next theorem generalizes

Theorem 1 in [8] as well as Theorem 1 in §30 of [6].

Theorem 1. Let (G, Q) be a semigroup with positive definite structure.

Then for each A-valued positive definite function p on G there exists a

Hubert module H, a *-representation x-*Tx by bounded A-linear operators

on H and/„ e H such that p(x)=(f0, Txf0) and \\TX\\2^LX for all x e G.

If p is strictly positive definite then the mapping x-+Tx is an isomorphism.

The corresponding theorem holds for complex-valued positive definite

functions.

Proof. Fix aeA and consider the function q(x) = tr(a*p(x)a). Then

q e Q and as in [6, §30] one can show that q(x*)=q(x) for each x e G:

if A is any complex number then q(l) + Xq(x) + Xq(x*)+\X\2q(x*x) is real;

this means that a.=q(x)+q(x*) and ß=iq(x)—iq(x*) are real and so

q(x) = (oL + iß) =rx—iß=q(x*). Now, using the principal argument in

the proof of Lemma 1 of [10], one can show that p(x*)=p(x)* for all

x e G. After that we can proceed as in the proof of Theorem 1 of [10]. Let

K be the set of all formal finite sums/= 2¿ xiau g— 2j jA w'tn -Y¡' }'¡ e G

and a¿, b¡ e A. Define (/, g)=2;.í ^pixfy^bj, consider

m = {feK\(ff) = 0}

and let H be the completion of the space H' = K/yi with respect to the

norm ||/|| = (tr(/,/))1/2 (if p is strictly positive definite then ?l=(0) and

H' = K). Now for each x eG define Tx(f)=TxX^ xial)=^xxiai. The

condition "q(x*x)^Lxq(l), q e Q" implies that Tx will induce a bounded

linear operator on H (which we will also denote by Tx): let f=^xiai

be fixed; then q0(x)=tr(f,Txf)=trÇ2.ua*p(x*xxj)af) is a member of
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Q, which means that qn(x*x)^Lxq0(l) (and this can be rewritten as

"\\Txf\\2^Lx\\f\\2"). It follows that Tx is a bounded (^-linear) operator

on H and ||rj2^La for each xeG.

Also as in [8, pp. 147-148] one can show that there exists /„ e H such

thatp(x) = (fn, Txf0) for all x eG. If q is strictly positive definite then the

mapping x-*Ta is an isomorphism: if x¿¿y then 0<p(x*x)—p(x*y)—

p(y*x)+p(y*y)=\\(Tx-Tv)fn\\2 and so Tm*Tr

Remark. Lindahl and Maserick [3, Theorem 3.2] have a similar result

but they only consider complex positive definite functions.

3. Now let us assume that G is commutative. Then we have the following

abstract analogue of Bochner theorem (compare with [9] and [11]).

(Note that, unlike Lindahl and Maserick [3, Theorem 2.1], we do not

assume the function p below to be bounded.)

Theorem 2. Let G be a commutative semigroup having a positive definite

structure. Then for each A-valued positive definite function p on G there

exists a compact Hausdorff space 9JÎ, a homomorphism x—>-x( ) of G into

a multiplicative semigroup of complex-valued continuous functions on 93Î

and a positive A-valued measure p, defined on Bore/ subsets of ÏR, such

that p(x)=$<m x(M) dp(M) for each xeG. If p is strictly positive definite

then the mapping x—>-x( ) is an isomorphism.

The corresponding theorem holds for a complex-valued positive

definite function.

Proof. Let x-*Tx be a ^representation of G on a Hubert module H

such that p(x) = (f0, Txf0) for some/0 e H (use Theorem I above). Let B

be the Z?*-algebra generated by the operators Tx, x e G. Then B is com-

mutative and so there exists a compact Hausdorff space SJi such that B

is isomorphic and isometric to the algebra C(9Jt) of all continuous complex-

valued functions on 9JÎ [4, p. 88].

For a given x eG let x( ) be the member of C(9Jl) corresponding to

the operator Tx. Then it follows from Proposition II of subsection 4 of

§17 of [6] that there exists a spectral measure Z5: A—<-PA defined on Borel

subsets of 3DÏ, such that Tx=$mx(M) dP3I for all xeG. As in [11] we

conclude that each P& is /1-linear [7] (we use the fact that each PA com-

mutes with each bounded linear operator that commutes with all Tx,

x eG); so P is a generalized spectral measure [9, p. 118].

Now we define the measure p by setting p(A) = (f0, P&f0) and verify:

p(x) = (/a, TJ0) = (/„, ttx(M) dPj^f^

= ïx(M) d(f0, PMf0) = (x(M) dp(M) (see Lemma 1 in [9]).
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4. In this section we shall present a more general theory which includes

the above theorems as well as theorems about representations of a

Banach *-algebra [10], [11] as special cases.

Definition 2. Let G and A be as above, and let p be an /(-valued

positive definite function on G. A derívate of p is a function on G of

the form p'(x)='^iij a*p(xfxx¡)a¡ for some {ax, ■ ■ ■ , an}<^A and some

{xx, ■ ■ • , x„}<=G. A derívate of a complex positive definite function is a

function q'(x)='2.iJ XiXjq(x*xxj), where Xx, ■ ■ ■ , Xn are complex numbers.

Note that dérivâtes are also positive definite.

Definition 3. An ^-valued (complex-valued) positive definite function

p is said to be representable if for each x e G there exists a positive number

Lxip) such that T(p'(x*x))^Lx(p)r(p'(l))(p'(x*x)^Lx(p)p'(l)) for each

derívate/»' of p.

Note that a semigroup G with positive definite structure has the prop-

erty that each positive definite function on G is representable. In a more

general case we may say that the semigroup has a partial positive definite

structure.

Example 2. Let B be a Banach *-algebra with identity such that \\x*\\ =

||jc|| for all x e B. Then [6, §10] each positive linear functional q on B

satisfies the condition q(x*x)^\\x*x\\q(l), and this implies that each

positive linear functional p is a representable positive definite function

with Lx(p)=\\x*x\\. If B=D(G)e [10, p. 303] then each linear ,4-valued

positive definite function on B (positive ^-functional in the terminology of

[10]) is representable.

Example 3. Let G be a multiplicative semigroup of /i-linear [7, p. 194]

operators, acting on a Hubert module H, closed under the involution

T--T* and including the identity operator /. life H thenp(T) = (f, Tf) is

a representable positive definite function on G.

Theorem 3. For each representable A-valued positive definite function

p on a semigroup G as above, there exists a Hilbert module H, a *-represen-

tation x—Tx of G on H and fe H such that p(x) = (f, Txf) and \\Tx\\2^

Lxip)for all x e G.

If G is communicative then p has a representation p(x)— j\m x(M) dp(M),

where 2B, p and x(M) are as in Theorem 2 above.

We have also a corresponding theorem for complex-valued positive

definite functions.

The proof of Theorem 3 is obvious in view of the proofs of Theorems

1 and 2 above.

5. We should like to mention here one of the applications of the

above theory that may be of interest. Let G be as above. One can define
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an abstract stationary process (stationary random field) as a mapping

I of G into a Hubert module H such that (£(/), |(j))=(f(l), t(t*s)) for

all s, t e G. Then the first part of Theorem 3 implies that each represent-

able positive definite function is of the form p(t)= (1(1), f(i)) f°r some

abstract stationary process £ on G. This is a partial generalization of

Theorem 5.1 in Chapter 1 in [14] and of Theorem 2 in [13].

The author would like to thank the referee for his critical comments.
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