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SEMIGROUPS WITH POSITIVE DEFINITE STRUCTURE
PARFENY P. SAWOROTNOW

ABSTRACT. Let G be a semigroup with the identity 1 and an
involution x—x*. One can define a complex-valued and an H*-
algebra valued positive definite function on G in the obvious way.
Assume that for each x € G there exists a positive number L, such
that g(x*x) <L.q(1) for each complex positive definite function on
G. It is shown that each H *-algebra valued positive definite function
on G is of the form p(x)=(f, T.f) for some representation T of G
on a Hilbert module H and f€ H. Also there is an analogue of
Bochner theorem for G.

1. In making a comparison between representation theories of groups
and algebras one can observe certain similarities between these two
theories. In both cases there is a correspondence between representations
and certain types of positive definite functions [8], [10]. Also there is an
analogue of Bochner theorem [9], [11] in each case. This observation
suggests that there is a more general unifying theory which generalizes
both the theory of representations of groups and the theory of represen-
tations of algebras.

The intent of this note is to present theories of this kind.

2. Let G be a semigroup with identity 1 and an involution x—x* (it
has the property that 1*=1 and x**=x, (xy)*=y*x* for all x, y € G).
A complex-valued function ¢ on G is said to be positive definite if
S5 Adq(xFx;)Z0 for each pair {4}, 4y, - -+, 4,}, {x1, -, x,} of finite
sets of complex-numbers and members of G respectively. It is strictly
positive definite if the equality holds only when 4,=24,=---=1,=0.

DEFINITION 1. Assume that the family Q of complex positive definite
functions on G is not empty. Then G is said to have a positive definite
structure if for each x € G there exists a positive number L, such that
q(x*x)=L,q(1) for all g€ Q (note that g(x*x)=0). The ordered pair
(G, Q) will be called *‘semigroup with positive definite structure’.

ExaMPLE 1. Let G be an abstract group (or a topological group) such
that the set Q of positive definite functions on G is not empty (different
examples of such groups can be found on pp. 280-281 of [2]). Then
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(G, Q) is a semigroup with positive definite structure if we set x*=x"1
(in this case g(x*x)=¢(1) for all x € G).

Now let A be a proper H*-algebra [1] and let 7(4)={xy|x, y € A}
be its trace-class [12]. A mapping p:G—7(4) is called an A-valued positive
definite function on G if 3, ; afp(x¥x;)a; =0 for all subsets {a,, a5, - - - , a,}
of A and {x;, - -, x,}<G. As in the complex case, p is strictly positive
definite if 3, ; afp(x¥x;)a;>0 except for the trivial case.

REMARK. Above we are assuming that the range of the function p is
a subset of 7(A). This assumption is needed in the proof of Theorem 1
below to verify that p(x)=(fy, T.f,) (see [8, pp. 147-148]). However
it is possible that this assumption could be derived from the other prop-
erties of the positive definite function p and we need only to assume that
p(x) € A for each x. We leave this as an open problem.

We define a *-representation of G to be a mapping x—T, of G into
bounded A-linear operators on a Hilbert module such that T,=I,
T,.=T3 and T,,=T,T, for all x,yeG. The next theorem generalizes
Theorem 1 in [8] as well as Theorem 1 in §30 of [6].

THEOREM 1. Let (G, Q) be a semigroup with positive definite structure.
Then for each A-valued positive definite function p on G there exists a
Hilbert module H, a *-representation x—T, by bounded A-linear operators
on H and fy € H such that p(x)=(f,, T, fo) and |T,|*<L, for all x€G.
If p is strictly positive definite then the mapping x—T, is an isomorphism.

The corresponding theorem holds for complex-valued positive definite
functions.

ProOF. Fix a € 4 and consider the function g(x)=tr(a*p(x)a). Then
g € Q and as in [6, §30] one can show that g(x*)=4g(x) for each x € G:
if A is any complex number then q(1)+Aq(x)+Ag(x*)+|A|2g(x*x) is real;
this means that a=q(x)+¢(x*) and f=ig(x)—ig(x*) are real and so
§(x)=(a+if) =a—if=q(x*). Now, using the principal argument in
the proof of Lemma 1 of [10], one can show that p(x*)=p(x)* for all
x € G. After that we can proceed as in the proof of Theorem I of [10]. Let
K be the set of all formal finite sums f=>, x,a,, g=2, y;b; with x;, y; €G
and a,, b; € A. Define (f, g)=2, ; af p(x{y;)b;, consider

N={feK|[(f,/)=0}

and let H be the completion of the space H'=K/N with respect to the
norm || fll=(tc(f, f))"* (if p is strictly positive definite then 9t=(0) and
H'=K). Now for eachx €G define T,(f)=T,(2> x,a)=2 xx,a;. The
condition “g(x*x)=<L,g(1), g € Q" implies that T, will induce a bounded
linear operator on H (which we will also denote by T,): let f=> x,a,
be fixed; then go(x)=tr(f, T, f)=tr(Z,; aip(xixx;)a;) is a member of
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Q, which means that go(x*x)=L,g,(1) (and this can be rewritten as
“NTfIESL, flI#’). It follows that T, is a bounded (A-linear) operator
on H and ||T,|*<L, for each x €G.

Also as in [8, pp. 147-148] one can show that there exists f € H such
that p(x)=(f,, T, f,) for all x € G. If q is strictly positive definite then the
mapping x—T, is an isomorphism: if x#y then 0<p(x*x)—p(x*y)—
PO*)+p(y*N)=I(T.—T,) I and so T, =T,

ReMARK. Lindahl and Maserick [3, Theorem 3.2] have a similar result
but they only consider complex positive definite functions.

3. Now let us assume that G is commutative. Then we have the following
abstract analogue of Bochner theorem (compare with [9] and [11]).
(Note that, unlike Lindahl and Maserick [3, Theorem 2.1], we do not
assume the function p below to be bounded.)

THEOREM 2.  Let G be a commutative semigroup having a positive definite
structure. Then for each A-valued positive definite function p on G there
exists a compact Hausdorff space I, a homomorphism x—x( ) of G into
a multiplicative semigroup of complex-valued continuous functions on M
and a positive A-valued measure u, defined on Borel subsets of M, such
that p(x)=fm x(M) du(M) for each x € G. If p is strictly positive definite
then the mapping x—x( ) is an isomorphism.

The corresponding theorem holds for a complex-valued positive
definite function.

PROOF. Let x—T, be a *-representation of G on a Hilbert module H
such that p(x)=(fy, T, f,) for some f, € H (use Theorem 1 above). Let B
be the B*-algebra generated by the operators T,, x € G. Then B is com-
mutative and so there exists a compact Hausdorff space M such that B
is isomorphic and isometric to the algebra C(9M) of all continuous complex-
valued functions on 9t [4, p. 88].

For a given x € G let x( ) be the member of C(M) corresponding to
the operator T,. Then it follows from Proposition II of subsection 4 of
§17 of [6] that there exists a spectral measure P:A—P, defined on Borel
subsets of M, such that T,= [y x(M) dP,, for all x € G. As in [11] we
conclude that each P, is A-linear [7] (we use the fact that each P, com-
mutes with each bounded linear operator that commutes with all 7,
x € G); so P is a generalized spectral measure [9, p. 118].

Now we define the measure p by setting u(A)=(f,, P, fo) and verify:

pw=mno=@(hmwﬁﬂ

= f X(M) d(fy, Ppfy) = f (M) du(M) (see Lemma 1 in [9]).
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4. In this section we shall present a more general theory which includes
the above theorems as well as theorems about representations of a
Banach *-algebra [10], [11] as special cases.

DerINITION 2. Let G and A4 be as above, and let p be an A-valued
positive definite function on G. A derivate of p is a function on G of
the form p'(x)=3, ; afp(xfxx;)a; for some {a,,---,a,} <A and some
{x1, -, x,}<G. A derivate of a complex positive definite function is a
function ¢'(x)=", ; A;4,q(x¥xx,), where 2, - - -, A, are complex numbers.
Note that derivates are also positive definite.

DEFINITION 3. An A-valued (complex-valued) positive definite function
p is said to be representable if for each x € G there exists a positive number
L,(p) such that =(p'(x*x))= Lo(p)r(p'(D)(p' (x*x) = L,(p)p' (1)) for each
derivate p’ of p.

Note that a semigroup G with positive definite structure has the prop-
erty that each positive definite function on G is representable. In a more
general case we may say that the semigroup has a partial positive definite
structure.

ExAMPLE2. Let Bbea Banach *-algebra with identity such that || x*| =
x| for all x € B. Then [6, §10] each positive linear functional ¢ on B
satisfies the condition g(x*x)=|x*x|lg(1), and this implies that each
positive linear functional p is a representable positive definite function
with L (p)=|x*x|. If B=L'(G)e [10, p. 303] then each linear 4-valued
positive definite function on B (positive 4-functional in the terminology of
[10]) is representable.

ExaMpPLE 3. Let G be a multiplicative semigroup of A4-linear [7, p. 194]
operators, acting on a Hilbert module H, closed under the involution
T—T* and including the identity operator I. If f € H then p(T)=(f, If) is
a representable positive definite function on G.

THEOREM 3. For each representable A-valued positive definite function
p on a semigroup G as above, there exists a Hilbert module H, a *-represen-
tation x—Tx of G on H and fe€ H such that p(x)=(f, Txf) and || Tx|*=
L.(p) forall xeG.

If G is communicative then p has a representation p(x)= [y x(M) du(M),
where W, u and x(M) are as in Theorem 2 above.

We have also a corresponding theorem for complex-valued positive
definite functions.

The proof of Theorem 3 is obvious in view of the proofs of Theorems
1 and 2 above.

5. We should like to mention here one of the applications of the
above theory that may be of interest. Let G be as above. One can define
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an abstract stationary process (stationary random field) as a mapping
£ of G into a Hilbert module H such that (&(¢), £(s))=(&(1), &(t*s)) for
all 5, t € G. Then the first part of Theorem 3 implies that each represent-
able positive definite function is of the form p(t)=(&(1), £(¢)) for some
abstract stationary process & on G. This is a partial generalization of
Theorem 5.1 in Chapter 1 in [14] and of Theorem 2 in [13].

The author would like to thank the referee for his critical comments.
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