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SOME ORDER AND TOPOLOGICAL PROPERTIES
OF LOCALLY SOLID LINEAR TOPOLOGICAL

RIESZ SPACES

C   D.   ALIPRANTIS

Abstract. A theorem of Luxemburg and Zaanen on normed

Riesz spaces (Theorem 2.4 below) and one of Nakano (Theorem

2.3 below) have been extended by the author in [1] to metrizable

locally solid linear topological Riesz spaces. This note gives an

example which shows they cannot be further extended to non-

metrizable Hausdorff locally solid linear topological Riesz spaces.

1. Notation and basic concepts. For notation and terminology concern-

ing Riesz spaces we refer to [5]. Let L be a Riesz space. A vector subspace

A of L is called an ideal if |w|^|i-i and v e A implies u e A. An ideal A is

called a c-ideal if O^u^u in L and {un}ç:A implies ue A. An ideal A

is called a band if O^u^u in L and {uAs^A implies u e A. A subset S

of L is called a solid set if |w| ̂ |c| and v e S implies u e S. If r is a linear

topology for L (a topology for which both mappings (u, v)\-^u+v,

(X, u)t-^>Xu are continuous), with a basis for the neighborhood system

of the origin consisting of solid sets, then (L, t) is called a locally solid

linear topological Riesz space, or briefly, a locally solid Riesz space.

2. Order and topological continuity. Following Luxemburg and Zaanen

(see [4, Notes X, XI]), we introduce the following properties for a locally

solid Riesz space (L, t).

(A, 0):«„|0 in L and {un} is a T-Cauchy sequence implies u„—>-0<

(A, \):un[Q in L implies u^d.

(A, ii):uald in L implies u„f+d.

(A, \ú):d^un1^u in L, implies that {un} is a T-Cauchy sequence.

(A, iv):0^«af ^u in /_, implies that {uA is a r-Cauchy net.

Theorem 2.1.    Let (L, r) be a locally solid Riesz space. Then:

(1) (A, ii) implies (A, i).

(2) (L, t) satisfies (A, iii) if and only if' (L, t) satisfies (A, iv).

(3) If L is Archimedean, then (A, ii) implies (A, iii).

Proof.    (1) Trivial.
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(2) It is evident that (L, t) satisfies (A, iii) if (L, t) satisfies (A, iv), so

we have only to show that (A, iii) implies (A, iv). Suppose that this is not

so. Then there exists a net {ux}, Ö^Maf<« in L which is not a r-Cauchy

net. This implies the existence of a circled neighborhood V of zero such

that for every index a there are two indices a,^a, a2^a with ux —ua ^ V.

Now, let W be a circled neighborhood of zero such that W+ W^ V,

and let a, be a fixed index. Then there exists an index a2^ax such that

ux —ua $ W, otherwise ux — ux e W for all x^.a.x would imply that

ux—wa. = (wa—u^ + iu^ — ua.) e W+ Wi¿ V for all a, a'^a,, contra-

dicting the selection of the neighborhood V. Let now a„ be given. Applying

the same argument we pick an+1 such that an+i^an and with ua —ux£

W. But then the sequence {ux } satisfies 6^u,J^u in L and {ua } is not

a r-Cauchy sequence. So, (L, t) does not satisfy (A, iii), a contradiction.

This completes the proof that (A, iii) implies (A, iv).

(3) Assume that L is Archimedean. Let 0^un]^uo in L, and assume

(L, t) satisfies (A, ii). We define the set G = {geL:un^g, forn=l, 2, • • • }.

Then we have g—u„l(gn)6 in L (see [5, Theorem 22.5, p. 115]). It follows

that

g  —  "n -> o,
6 n (a.n)

and from this we easily find that {un} is a r-Cauchy sequence.

The following theorem characterizes the properties (A, i) and (A, ii)

and generalizes a theorem of T. Andô and W. A. J. Luxemburg [3,

Theorem 47.3, p. 244].

Theorem 2.2.    Let (L, r) be a locally solid Riesz space. Then we have:

(i) (L, t) satisfies (A, i) if and only if every r-closed ideal of L is a

a-ideal.

(ii) (L, t) satisfies (A, ii) if and only if every r-closed ideal of L is a band.

(For a proof we refer the reader to [1].)

In [4, Note X], the following two theorems were proved.

Theorem 2.3. The following conditions on a normed Riesz space Lp are

equivalent.

(i) Lp is o-Dedekind complete, and (A, i) holds.

(ii) Lp is super Dedekind complete and (A, ii) holds.

Theorem 2.4. The following conditions on a normed Riesz space Lp are

equivalent.

(a) The space Lp satisfies both (A, i) and (A, iii).

(ß) The space Lp satisfies (A, ii).
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Note. Theorem 2.3 is due to Nakano (see [6, pp. 321-322]), and Theorem

2.4 is due to Luxemburg and Zaanen (see [4, Theorem 33.8, Note X,

p. 505]).
Theorems 2.3 and 2.4 were generalized in [1] for metrizable locally

solid Riesz spaces.

The following example shows the above theorems do not hold for

nonmetrizable Hausdorff locally solid Riesz spaces in general.

Example 2.5. Let L be the real vector space of all real valued, Lebesgue

measurable functions / defined on [0,1] such that JJ 1/(01" dt< + co,

where 0</?< 1. L becomes a Riesz space under the ordering/^g defined

by/M=g(x) for all x e [0, 1]. Note that the elements of L are functions,

not equivalence classes, i.e., functions differing at one point are already

considered as different.

Now given n e N, ô>0 and F={xx, ■ ■ ■ , xk}Q [0, 1], we define the

set

Wv.n.s = j/e L: ij/(0r dt<~n and |/(xt)| < Ô, for i = 1, • • •, fcj.

As F runs over the finite subsets of [0, 1], n over the natural numbers,

and ô over (0, +oo) we obtain a family of sets {rVF,n,i} which is a filter

basis for a neighborhood system of the origin for a uniquely determined

linear topology t of L (note that rVF2ntd/2 + WF:2riidl2^ rVy^.s, and that

given/eL, XfE rVFinô for some X>0, see [2, p. 81]). Obviously, each

WF¡n,0 is a solid set. It is also evident that r is a Hausdorff topology. So,

(L, t) is a Hausdorff locally solid linear topological Riesz space. We note

that (L, t) has the following properties:

(1) t is a sequentially complete (but not complete), nonmetrizable

topology.

(2) Properties (A, i) and (A, iii) hold in (L, t) but (A, ii) does not

hold.

To see that (A, i) holds let un{0 in L. It is easy to show that this implies

w„(x)J,0 in R, for all x e [0, 1]. It follows now from the Lebesgue domi-

nated convergence theorem that f,1, (un(t))" dt[0. Hence u„ e WFk,à for

all sufficiently large n. That is, u^d.

For (A, iii), let ö^w„|^«0 in L. Then 0^un(x)/\u(x)^u0(x) for all

x e [0, 1]. It follows easily that u e L and that d^un]u in L. Hence

0<f \un+k(t) - un(t)\v dt

újm) - un+k(t)y dt +£("(o - «„(or dt-+o
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as n, A:-»-+00, by the Lebesgue dominated convergence theorem. From

this it follows easily that {w„} is a r-Cauchy sequence.

To see that (A, ii) does not hold, let ag[0, 1], a finite, and let 0^

ua=Xz- Then dSu^e (e(x)= 1, for all x e [0, 1]), as a runs over the finite

subsets of [0, 1]. Note that JJ \e(t)—ux(t)\> dt=l for all a, and from this

we see that {wj does not converge with respect to r to e.

(3) L is o--Dedekind complete, but not Dedekind complete. The

cr-Dedekind completeness follows from the Lebesgue dominated con-

vergence theorem. To see that L is not Dedekind complete, first notice

that d^u^u in L, implies ux(x)]u(x) for all x e [0, 1]. Now consider a

nonmeasurable set E of [0, 1]. Define the net 0^ux=xx for all finite

subsets a of F. Then («JgL, d^u^^e and uJ(x)]%E(x) for all x e [0, 1].

It follows easily that supfwj,} does not exist in L.

(4) L satisfies (A, 0) but does not satisfy the following generalized

(A, 0) property: ux[d and {«J is a r-Cauchy net implies u^d.

To see this use the net {ux} of (2).

(5) Let A={fe L:f=0 a.e.}. Then A is a r-closed ideal of (L, t).

Indeed if u^u in L, {ux}&A, then we have in particular that

r rMW dt = mo - «(or dt _> o.
Jo Jo <«>

Thus fj \u(t)\v dt—0, which shows that u e A. Since d^un]u implies

un(x)]u(x) for all x e [0, I] it follows easily that A is a o--ideal. Note also

that d^u^e, {ux} is the net of (2), and {ux}^A. But e $ A. This shows

that A is not a band of L, in accordance with Theorem 2.2.

The following example shows that Theorems 2.3 and 2.4 are not even

true for non-Hausdorff locally solid Riesz spaces having a countable

basis for zero.

Example 2.6. Consider the Riesz space L of Example 2.5 and consider

the same neighborhoods WF_nt3 with the restriction that F runs over all

finite subsets of the rationals in [0, 1]. The collection {WF.„,Ô} is a filter

basis for a neighborhood system of the origin for a uniquely determined

linear topology t of L. Since each fVF¡nii is a solid set, (L, r) is a locally

solid linear topological Riesz space. Note that (L, r) is non-Hausdorff

having a countable basis for the neighborhoods of zero.

Using the same arguments as in Example 2.5 we can see that both

(A, i) and (A, iii) hold but (A, ii) does not hold.
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