A BOUNDED HILBERTIAN BASIS IN $C[0,1]$

SHERWOOD SAMN

Abstract

The existence of a bounded Hilbertian basis in $C[0,1]$ is established.

1. Introduction. It is well known that an orthonormal sequence $\left\{x_{n}\right\}$ in a Hilbert space possesses the following properties:
(1) $\sum_{i=1}^{\infty} a_{i} x_{i}$ converges implies $\sum_{i=1}^{\infty}\left|a_{i}\right|^{2}<\infty$, and
(2) $\sum_{i=1}^{\infty}\left|a_{i}\right|^{2}$ implies $\sum_{i=1}^{\infty} a_{i} x_{i}$ converges.

A basis $\left\{x_{i}\right\}$ in a Banach space satisfying (1) is called a Besselian basis and a basis $\left\{x_{i}\right\}$ in a Banach space satisfying (2) is called an Hilbertian basis. A basis $\left\{x_{n}\right\}$ is bounded if $0<\inf _{n}\left\|x_{n}\right\| \leqq \sup _{n}\left\|x_{n}\right\|<\infty$. In [2], Pełczyński raised the question whether there exists in $C[0,1]$ (in $L^{1}[0,1]$) a bounded Besselian (resp. Hilbertian) basis, in particular, whether there exists in $C[0,1]$ a bounded orthonormal basis. In [4], Olevskiir proved the nonexistence of bounded orthonormal basis in $C[0,1]$; in this paper we will show that there exists a bounded Hilbertian basis in $C[0,1]$.

A basis $\left\{x_{n}\right\}$ of a Banach space is $w c_{0}$ (or semishrinking) if x_{n} converges weakly to 0 . Since every Hilbertian basis is a $w c_{0}$ basis, it is natural to look for a bounded Hilbertian basis in the class of bounded $w c_{0}$ bases. The referee has pointed out to us that Warren [3] has constructed a bounded $w c_{0}$ basis in $C[0,1]$. Our basis is similar to his, but is a little simpler.
2. Main result. Let $a_{0}=0, a_{1}=1$ and for $j=2^{n}, a_{j+k}=(2 k-1) /(2 j)$ $\left(n=0,1, \cdots ; k=1,2, \cdots, 2^{n}\right)$. Let $b_{n}=1 / 2^{n+1}(n=1,2, \cdots)$ and let $\left\{c_{n}\right\}$ be the subsequence of $\left\{a_{n}\right\}$ complementary to the subsequence $a_{0}, a_{1}, b_{1}, b_{2}, \cdots$ of $\left\{a_{n}\right\}, \quad$ i.e. $\quad c_{1}=\frac{1}{2}, \quad c_{2}=\frac{3}{4}, \quad c_{3}=\frac{3}{8}, \quad c_{4}=\frac{5}{8}, \quad c_{5}=\frac{7}{8}$, $c_{6}=\frac{3}{16}, \cdots$. Next we define a rearrangement of $\left\{a_{n}\right\}$ as follows: a_{0}, a_{1}, c_{1}; $b_{1}, b_{2}, b_{3}, c_{2} ; \cdots ; b_{q(n-1)+1}, \cdots, b_{q(n)}, c_{n} ; \cdots$, where $q(n)=1+2^{2}+\cdots+$ $n^{2}-n(n=2,3, \cdots)$. (Note. To each positive integer n is associated a group of numbers consisting of $n^{2}-1 b_{i}$'s and one c_{i}.) To simplify matters, let us rename the above sequence as d_{0}, d_{1}, d_{2},

We now define a sequence in $C[0,1]$ as follows (it is slightly different

[^0]from the usual way of defining a generalized Schauder basis [1, p. 11]):
\[

$$
\begin{array}{rlrl}
x_{0}(t) & =1, & \\
x_{1}(t) & =1-t, \\
x_{2}(t) & =1, & & \\
& =0, & & t \in\left\{d_{0},\right. \\
& =\text { linear } & & \text { for other } t,
\end{array}
$$
\]

and for $n \geqq 3$

$$
\begin{aligned}
x_{n}(t) & =1, & & t=d_{n} \\
& =0, & & t \in\left\{d_{0}, d_{1}, \cdots, d_{n-1}, g_{n}\right\} \\
& =\text { linear } & & \text { for other } t,
\end{aligned}
$$

where g_{n} denotes the first b_{i} in the sequence $\left\{b_{i}\right\}$ not in $\left\{d_{0}, d_{1}, \cdots, d_{n}\right\}$.
Finally, we define another sequence in $C[0,1]$ as follows: $y_{i}=x_{i}$ ($i=0,1,2$), and for $n \geqq 2$ and $p(n)=1+2^{2}+\cdots+(n-1)^{2}+1$

$$
\begin{aligned}
& y_{p(n)+1}=-x_{p(n)+1}-x_{p(n)+2}-\cdots-x_{p(n+1)-1}+n^{-2} x_{p(n+1)}, \\
& y_{p(n)+k}=x_{p(n)+k-1}+n^{-2} x_{p(n+1)} \quad\left(k=2, \cdots, n^{2}\right) .
\end{aligned}
$$

We note in particular that for $n \geqq 3,1 \leqq k \leqq n^{2}$, the support of $y_{p(n)+k}$ is contained in the union of two closed disjoint intervals $I_{n, 1}$ and $I_{n, 2}$, where $I_{n, 1}=\left[b_{q(n)+1}, b_{q(n-1)}\right]$ and $I_{n, 2}=\left[b_{q(n-1)-1}, 1\right]$. (Note. $b_{q(n-1)-1} \leqq$ $b_{n-1}<c_{n}<1$.)

Theorem. The sequence $\left\{y_{n}\right\}$ is a bounded Hilbertian basis of $C[0,1]$.
Proof. The direct method used in showing the generalized Scauder basis of $C[0,1]$ is a basis $[1, \mathrm{p} .11]$ can be used with slight modification to show $\left\{x_{n}\right\}$ is a basis. Since $x_{i}=y_{i}(i=0,1,2), x_{p(n+1)}=y_{p(n)+1}+\cdots+$ $y_{p(n+1)}$, and $x_{l,(n)+k}=y_{p(n)+k+1}-n^{-2}\left(y_{p(n)+1}+\cdots+y_{p(n+1)}\right) \quad(k=1, \cdots$, $\left.n^{2}-1\right),\left[x_{i}\right]=\left[y_{i}\right](i=0,1,2)$ and $\left[x_{p(n)+1}, \cdots, x_{p(n+1)}\right]=\left[y_{p(n)+1}, \cdots\right.$, $\left.y_{p(n+1)}\right]$. Hence it suffices $[1, \mathrm{p} .64]$ to show that there is a constant C independent of n such that for any sequence of real numbers h_{1}, h_{2}, \cdots,

$$
\left\|\sum_{i=1}^{k} h_{i} y_{p(n)+i}\right\| \leqq C\left\|\sum_{i=1}^{n^{2}} h_{i} y_{p(n)+i}\right\|
$$

$\left(n=1,2, \cdots ; k=1,2, \cdots, n^{2}\right)$.
The following argument is similar to an argument used in [3]; we present it here for completeness. Let $g(k)=0$ if $k=n^{2}$ and $=1$ if $1 \leqq k<n^{2}$, then

$$
\begin{aligned}
\| \sum_{i=1}^{k} h_{i} y_{p(n)+i} & \| \\
& =\operatorname{Max}\left\{\left|h_{1}+\cdots+h_{k}\right| / n^{2},\left|h_{1}-h_{2}\right|, \cdots,\left|h_{1}-h_{k}\right|, g(k)\left|h_{1}\right|\right\} \\
& \leqq 2 \operatorname{Max}\left\{\left|h_{i}\right| \mid 1 \leqq i \leqq n^{2}\right\} .
\end{aligned}
$$

Now let $e_{1}=\left(h_{1}+\cdots+h_{N}\right) / N$, and $e_{k}=h_{k}-h_{1}, k=2, \cdots, n^{2}=N$; then $h_{1}=e_{1}-\left(e_{1}+e_{2}+\cdots+e_{n}\right) / N, h_{k}=e_{k}+h_{1}\left(k=2, \cdots, n^{2}=N\right)$, and

$$
\operatorname{Max}\left\{\left|h_{i}\right| \mid 1 \leqq i \leqq n^{2}\right\} \leqq 3 \operatorname{Max}\left\{\left|e_{i}\right| \mid 1 \leqq i \leqq n^{2}\right\} .
$$

Hence for $N=n^{2}$

$$
\begin{aligned}
\left\|\sum_{i=1}^{N} h_{i} y_{p(n)+i}\right\| & =\operatorname{Max}\left\{\left|h_{1}+\cdots+h_{N}\right| / N,\left|h_{1}-h_{2}\right|, \cdots,\left|h_{1}-h_{N}\right|\right\} \\
& =\operatorname{Max}\left\{\left|e_{i}\right| \mid 1 \leqq i \leqq N\right\} \\
& \geqq \frac{1}{3} \operatorname{Max}\left\{\left|h_{i}\right| \mid 1 \leqq i \leqq N\right\} \\
& \geqq \frac{1}{6}\left\|\sum_{i=1}^{k} h_{i} y_{p(n)+i}\right\| .
\end{aligned}
$$

Hence C can be chosen to be 6 .
To show that $\left\{y_{n}\right\}$ is a bounded Hilbertian basis, we may disregard a finite number of y_{i} 's. Therefore, for sake of symmetry, we will consider only $y_{p(n)+k}$ for $n \geqq 3,1 \leqq k \leqq n^{2}$. Let $I_{n, 1}$ and $I_{n, 2}$ be the two disjoint closed intervals mentioned above. It is clear that

$$
\sup \left\{\left|y_{p(n)+k}(t)\right| \mid t \in I_{n, 1}\right\}=1
$$

and

$$
\sup \left\{\left|y_{p(n)+k}(t)\right| \mid t \in I_{n, 2}\right\}=n^{-2} \quad\left(n \geqq 3,1 \leqq k \leqq n^{2}\right) .
$$

For $n \geqq 3,1 \leqq k \leqq n^{2}$, let

$$
\begin{aligned}
u_{p(n)+k}(t) & =y_{p(n)+k}(t), & & t \in I_{n .1}, \\
& =0 & & \text { otherwise }, \\
v_{p(n)+k}(t) & =y_{p(n)+k}(t), & & t \in I_{n .2}, \\
& =0 & & \text { otherwise. }
\end{aligned}
$$

One can readily verify that $u_{p(n)+1}=-\left(x_{p(n)+1}+\cdots+x_{p(n+1)-1}\right), u_{p(n)+k}=$ $x_{p(n)+k-1}\left(k=2, \cdots, n^{2}\right)$, and $v_{p(n)+k}=n^{-2} x_{p(n+1)}\left(k=1,2, \cdots, n^{2}\right)$. Thus $u_{p(n)+k}, v_{p(n)+k}$ are in $C[0,1], u_{p(n)+k}+v_{p(n)+k}=y_{p(n)+k},\left\|u_{p(n)+k}\right\|=1$, $\left\|v_{p(n)+k}\right\|=n^{-2}, u_{p(n)+1} \leqq 0$ and $u_{p(n)+k} \geqq 0\left(2 \leqq k \leqq n^{2}\right)$. And because of the way the x_{i} 's are defined, we also have

$$
\left\|\sum_{n=3}^{N} u_{p(n)+1}\right\|=\left\|\sum_{n=3}^{N} \sum_{j=1}^{n^{2}-1} x_{p(n)+j}\right\|=1
$$

($N \geqq 3$), and similarly,

$$
\left\|\sum_{n=3}^{N-1} \sum_{k=2}^{n^{2}} u_{p(n)+k}+\sum_{k=2}^{K} u_{p(N)+k}\right\|=1
$$

$\left(N \geqq 3,2 \leqq K \leqq N^{2}\right)$.
Let $f \in C[0,1]^{*}$. Then $f\left(y_{n}\right)=f\left(u_{n}\right)+f\left(v_{n}\right)(n \geqq 7)$, and

$$
\sum_{n=7}^{\infty}\left|f\left(y_{n}\right)\right|^{2} \leqq 2\left\{\sum_{n=7}^{\infty}\left|f\left(u_{n}\right)\right|^{2}+\sum_{n=7}^{\infty}\left|f\left(v_{n}\right)\right|^{2}\right\}
$$

Hence it is sufficient to prove the two series on the right converge. Now $\left|f\left(v_{n}\right)\right| \leqq\|f\|\left\|v_{n}\right\|=\|f\| / k^{2}$ for some $k \geqq 3$. But because of the way the y_{n} 's are constructed, there are exactly $k^{2} v_{n}$'s with $\left\|v_{n}\right\|=k^{-2}$. Hence

$$
\sum_{n=7}^{\infty}\left|f\left(v_{n}\right)\right|^{2} \leqq\|f\|^{2} \sum_{k=3}^{\infty} k^{2}\left(\frac{1}{k^{2}}\right)^{2}<\infty
$$

To show the other series converges, we note that there exists some function h of bounded variation on $[0,1]$ such that $f\left(u_{n}\right)=\int_{0}^{1} u_{n} d h$. Let h_{1} and h_{2} be the positive and negative variations of h respectively. For any integer $M=p(N)+K \geqq 7\left(N \geqq 3,1 \leqq K \leqq N^{2}\right)$,

$$
\begin{aligned}
\sum_{n=1}^{M}\left|f\left(u_{n}\right)\right|= & \sum_{n=3}^{N-1} \sum_{k=1}^{n^{2}}\left|f\left(u_{p(n)+k}\right)\right|+\sum_{k=1}^{K}\left|f\left(u_{p(N)+k}\right)\right| \\
= & \sum_{n=3}^{N}\left|f\left(u_{p(n)+1}\right)\right|+\sum_{n=3}^{N-1} \sum_{k=2}^{n}\left|f\left(u_{p(n)+k}\right)\right|+\sum_{k=2}^{K}\left|f\left(u_{p(N)+k}\right)\right| \\
\leqq & \sum_{i=1}^{-2} \sum_{n=3}^{N}\left|\int_{0}^{1} u_{p(n)+1} d h_{i}\right| \\
& +\sum_{i=1}^{2}\left\{\sum_{n=3}^{N-1} \sum_{k=2}^{n^{2}}\left|\int_{0}^{1} u_{p(n)+k} d h_{i}\right|+\sum_{k=2}^{K}\left|\int_{0}^{1} u_{p(N)+k} d h_{i}\right|\right\} \\
= & \sum_{i=1}^{2}\left|\int_{0}^{1}\left(\sum_{n=3}^{N} u_{p(n)+1}\right) d h_{i}\right| \\
& +\sum_{i=1}^{2}\left|\int_{0}^{1}\left(\sum_{n=3}^{N-1} \sum_{k=2}^{n^{2}} u_{p(n)+k}+\sum_{k=2}^{K} u_{p(N)+k}\right) d h_{i}\right| \\
\leqq & 2\left(V\left(h_{1}\right)+V\left(h_{2}\right)\right)
\end{aligned}
$$

where $V\left(h_{i}\right)(i=1,2)$ are the total variations of the monotone increasing functions h_{i}. This obviously implies the convergence of the series.

Finally, the boundedness is clear. This completes the proof.

References

1. I. Singer, Bases in Banach spaces. I, Springer, Berlin and New York, 1970.
2. A. Pelczyński, Some problems on bases in Banach and Fréchet spaces, Israel J. Math. 2 (1964), 132-138. MR 30 \#3356.
3. H. Warren, A special basis for C[0, 1], Proc. Amer. Math. Soc. 27 (1971), 495-499. MR 42 \#5023.
4. A. M. Olevskiĭ, Fourier series of continuous functions with respect to bounded orthonormal systems, Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 387-432. (Russian) MR 33 \#4581.

Department of Mathematical Sciences, Indiana and Purdue Universities at Indianapolis, Indianapolis, Indiana 46205

[^0]: Received by the editors June 22, 1972 and, in revised form, September 13, 1972 and January 17, 1973.

 AMS (MOS) subject classifications (1970). Primary 46B15; Secondary 46E15.

