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A  BOUNDED  HILBERTIAN   BASIS  IN   C[0, 1]

SHERWOOD   SAMN

Abstract.    The existence of a  bounded  Hilbertian  basis in

C[0,1] is established.

1. Introduction. It is well known that an orthonormal sequence {x„}

in a Hubert space possesses the following properties:

(1) 2£ia¿x¿ converges implies 2S=i |af|2<co, and

(2) Zti N2 implies ££, aixi converges.

A basis {xj in a Banach space satisfying (1) is called a Besselian basis and

a basis {x¿} in a Banach space satisfying (2) is called an Hilbertian basis.

A basis {x„} is bounded if 0<inf„ ||jc„||_supB ||x„||<oo. In [2], Pelczyñski

raised the question whether there exists in C[0, 1] (in F^O, 1]) a bounded

Besselian (resp. Hilbertian) basis, in particular, whether there exists in

C[0, 1] a bounded orthonormal basis. In [4], Olevskiï proved the non-

existence of bounded orthonormal basis in C[0, 1]; in this paper we will

show that there exists a bounded Hilbertian basis in C[0, 1].

A basis {x„} of a Banach space is wc0 (or semishrinking) if xn converges

weakly to 0. Since every Hilbertian basis is a wc0 basis, it is natural to

look for a bounded Hilbertian basis in the class of bounded wc0 bases.

The referee has pointed out to us that Warren [3] has constructed a

bounded wc0 basis in C[0, 1]. Our basis is similar to his, but is a little

simpler.

2. Main result. Let a0=0, ax=l and for y'=2re, aj+k = (2k — l)l(2j)

(n=0, I, ■ ■ ■ ; k=l,2, ■ ■ ■ ,2"). Let bn=\/2n+l (n=l,2, •••) and let

{c„} be the subsequence of {an} complementary to the subsequence

a0, ax, bx, b2, ■ ■ ■ of {an}, i.e. c,=|, c2 = |, c3=|, c4 = f, c5 = |,

c6=y¥, ■ ■ • . Next we define a rearrangement of {an} as follows: a0, ax, cx;

bx,b2, b3, c2; ■ ■ ■ ; ba(n_x)+1, • ■ ■ ,bQin),cn; ■ ■ • , where q(ri)= l+22 + - ■ +

n2—n(n = 2, 3, • • • ). (Note. To each positive integer n is associated a group

of numbers consisting of n2— 1 6/s and one c¿.) To simplify matters, let us

rename the above sequence as d0, dx, d2, ■ ■ ■ .

We now define a sequence in C[0, 1] as follows (it is slightly different
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from the usual way of defining a generalized Schauder basis [1, p. 11]):

*o(0 = 1,

x,(r) = 1 - t,

x.,(t) = I, t = d2,

= 0, IE {da, </,},

= linear    for other t,
and for n^.3

x„(t)=\, t = dn,

= 0, te {d0, dx, ■ ■ ■ , (/„_,, g„},

= linear    for other t,

where gn denotes the first b¡ in the sequence {¿>,} not in {d0, dx, • • • , dn).

Finally,  we define another sequence  in  C[0, 1]  as follows: yi=xi

(; = 0, 1,2), and for «^2 and p(n)= 1 +22 + - ■ - + (n-\)2+l

^Dlnl+l  —        xfl(n) + l — Xp(„)+2 vi>(n + l) _! + n~2x j)(n+i)'

ypin)+k — xv(n)+k-i + "   xMn+x)        (k — 2, • • • , n ).

We note in particular that for «_3, l^k^n2, the support ofyv(n)+k is

contained in the union of two closed disjoint intervals InX and In2,

where In,x=[bQin)+x, bQ{„_x)] and In.i=[bQ(n_v_1, 1]. (Note. bQin_x)_x<:

b„-i<c«<l-)

Theorem.    The sequence {yn} is a bounded Hilbertian basis ofC[0, I].

Proof.    The direct method used in showing the generalized Scauder

basis of C[0, 1] is a basis [1, p. 11] can be used with slight modification to

show {xn} is a basis.  Since x¿=j¿  (/'=0, 1,2),  xpin+x)=yp{n)+x-\-h

yp(n+i)y ano- xlli„)+k=y\,in)+k+x — n (j'p(7i)+i + ' ■ ■+}'P(ih-ii) (k=l,---,

n2-l), [xj=[r,] (1=0,1,2) and [xpM+x, ■ ■ • , xMn+x)]=[yMn)+x, ■ • • ,

)>vin+i)]- Hence it suffices [1, p. 64] to show that there is a constant C

independent of n such that for any sequence of real numbers hx, h2, ■ ■ ■ ,

k n

^"A'Mn) + ¡     á  C    ¿ *!*,<»»+<
1 = 1 i=l

(«=1,2, •■• ; A- = l,2, ••• ,n2).

The following argument is similar to an argument used in [3] ; we present

it here for completeness. Let g(k)=0 if k=n2 and =1 if 1 ̂ k<n2, then

i-

2, Kypinu-i

= Max{\hx + ■■■+ hk\/n2, \hx - h2\, ■■-,\h1- hk\, g(k)\hx\}

= 2 Max{|/tJ | 1 < i < n2}.
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Now let e1 = (h1 + - • •+hif)IN, and ek=hk—hx, k = 2, ■ • ■ , n2=N; then

h1 = ex-(ex + e2+- ■ •+en)//V, hk=ek+hx (k=2, ■■■ , n2 = N), and

Max{|A,.| | 1 <! / <; w2} <; 3 Max{|e,| | 1 ^ i ^ n2} .

Hence for N=n2

N

2 hiy*i»n)+i = Max{|/j, + • • ■ + hN\/N, |/i, - h2\

= Max{|eJ | 1 <; i <; A/}

= iMax{|/i,.| \lgi£N}

l*i - M}

1
¿ ^¡F»(n) + t

Hence C can be chosen to be 6.

To show that {yn} is a bounded Hilbertian basis, we may disregard a

finite number of y ¡'s. Therefore, for sake of symmetry, we will consider

only yp(n)+k for n^3, l^k^n2. Let InA and /„.2 be the two disjoint

closed intervals mentioned above. It is clear that

and

sup{l>V<»Hfc(')l \t£l,„2} = n~2

For «S>3, l^Âr^n2, let

sup{|/,(„)+»(OI | teInA} = 1,

(n > 3,1 ^ * = «2)-

"p(n)+*(0 = JV<n>+*0). '£'».1.

= 0 otherwise,

VptnH-*(t) = y»(«>+»(0. fe/Bi8,

= 0 otherwise.

One can readily verify that u9ln)+1= -(xp{n)+1 +-r-xJ)(n+1)^1). "„<*)+*=

*j>(»)+*-i ik=2, ■■■ , n2), and vp(n)+lc=n~2xp{n+1} (*«1, 2, • • • , rc2). Thus

Uv(n)+k>    Vl>{n)+k    are    1°    C[0,   1],     Wp(„)+fc-|- f p( n)+*=Fp(ri)+i->     II MP( rc)+*ll = ' >

|p»(»)+*S =»-a> ^(»h-i^O and ",;(»m^° (2^A-^n2). And because of the

way the x/s are defined, we also have

TV A'  b*-1

Z, ",)(«) + !      —       ¿Z,Xi(n)+; =    1
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(N^.3), and similarly,

IJV-1   n' K

/_,   ¿ uv(n)+k + ¿ Up(N)+k
n=3 »-=2

1

(N^3,2^K^N2).
Let/e C[0, 1]*. Then f(yn) =/(«„) +f(vn) (n^l), and

Ii/(yji2^2 2i/(wji2 + 2i/(or

Hence it is sufficient to prove the two series on the right converge. Now

l/0>«)l^ll/U IK 11 = 11/11 Ik2 for some Ä:>3. But because of the way the j>n's
are constructed, there are exactly k2 vn's with ||i>„||=/:~2. Hence

00 CO /  1   \2

2i/(oi2^ii/ii22W¿
n=7 I-=3        \K   '

<   00.

To show the other series converges, we note that there exists some function

h of bounded variation on [0, 1] such that/(«„)=JJ un dh. Let hx and h2

be the positive and negative variations of h respectively. For any integer

M=p(N) + K^l (N^3, l^K^N2),

Z\f("n)\ = 22 I/(«p(-)+*)I + 2 l/(«*w>+*>l
n=7 „=3S-=1 k=l

N A'-l   n K

= 2 l/(«»<»)+l)l +22 l/(«J><n)+*)l + 2 \f(UP<N)+t)\
n=3 n=3k^'i k=2

-2      .V       p

¡=1   „=3   -,0

+

2     /A'-l   n        |«i A'   |  p

2     2   2 UP<ni+kdh{   +2 UMN)+kdh{
Í-J Vn=3 fc=2   *'0 *=2 I"'0

= 2    (2 ""<»>+! ) í//,<
2      p /A'-l   »* A" \

+ 2   12 2 "»<»>+* + 2 u*<.v>+* ¿*<
¿=1   ■'0   ^n=3 ¡f=2 fc=2 '

^ 2(V(hx) + V(h2))

where V(hA (i=l, 2) are the total variations of the monotone increasing

functions hv This obviously implies the convergence of the series.

Finally, the boundedness is clear. This completes the proof.
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