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A  GENERALIZATION   OF  THE  BANACH-

STONE  THEOREM1

BAHATTIN   CENGIZ2

Abstract. In this paper the following generalization of the

Banach-Stone theorem is proved: If <j> is a linear isomorphism of

an extremely regular linear subspace of C0(X) onto such a subspace

ofC0(y)with \\<f>\\ ||^_11| <2 then Xand l'are homeomorphic.

If J is a locally compact space,3 we denote by C0(X) (Cl(X)) the

Banach space of continuous, complex- (real-) valued functions vanishing

at infinity on X, provided with the usual supremum norm. (We recall that

if X is actually compact, C0(X) (Cq(X)) coincides with the set of all con-

tinuous, complex- (real-) valued functions on X and is denoted by C(X)

(C(X)).) We call a closed linear subspace A of C0(X) completely regular

(extremely regular) if for each x e X, each open neighborhood V of x

(and each real number e with 0<e<l) there is a function fsA such

that l = \\f\\=f(x)>sUp{\f(x')\:x'EX\V} (l=\\f\\=f(x)>e^\f(x')\ for
every x e X\V). Clearly, every extremely regular function space is com-

pletely regular. But the converse is false. In [3] it is shown that if X has at

least three points then C0(X) has proper completely regular linear sub-

spaces while Ca(X) has a proper extremely regular linear subspace if, and

only if, A'is nondispersed, that is, the ath derived set Xw of A' is nonvoid

for every ordinal number a.

The well-known Banach-Stone theorem states that if C0(X) and C0( Y)

are isometrically isomorphic then X and Y are homeomorphic.

Myers [4] has proved that a sufficient condition for compact spaces X

and Y to be homeomorphic is that a completely regular linear subspace

of CT(X) and such a subspace of C( Y) be isometrically isomorphic.

Cambern [2] has shown that if there is a linear isomorphism c/> of C0(X)

onto C0( Y), for any locally compact spaces X and Y, such that \\<f>\\ H^"1!! <

2, then X and Y are homeomorphic. (Amir [1] proved this result, in-

dependently, in the special case that X and Y are compact and </> is from

Cr(X) onto Cr( Y).)
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The purpose of this article is to prove the following theorem, which, in

certain special cases, combines Myers' and Cambern's results.

Theorem. Let X and Y be locally compact spaces and let A and B be

extremely regular linear subspaces of C0iX) and C0(F) respectively. If there

is a linear isomorphism <j> of A onto B with ||<rS|| H«/^1!! <2, then X and Y are

homeomorphic.

Before beginning the proof of the theorem, we establish some con-

ventions regarding notation. Let p be a finite regular Borel measure on the

locally compact space X. For a Borel set F in X, p/Fif), fe C0iX),

denotes the /¿-integral off over F. If F=X we use p(f) instead of p/X(f).

\\p\\ denotes l/^KA'), where \p\ is the total variation of p. For a point x e X,

px denotes the unit point mass at x.

Let X, Y, A, B and </> be as in the theorem. We may assume that <f> is

norm-increasing and that ¡|rp_1|| = l. (If not, we take yi=\\<f>~l\\q) which has

these properties.) For each ye Y (x e X), <p*py (<f>*~lpx) will denote the

linear functional on A (on B) defined by: <p*Py(f) = <p(f)(y) ('f>*~1px(g)=:

<P~lig)(x)) f°r each/E A (g e B), where </>* denotes the adjoint of <j>. For

eachj? e Y(x e X), we fix a finite regular Borel measure v(y) on X (v(x) on

Y) such that v(y)(f) = <p*py(f) (v(x)(g)^*~'px(g)) for each/e A(geB)

and \\v(y)\\ = \\<p*py\\ (\\v(x)\\ = \\<p*-^x\\).

If {£/,-:/ el} denotes the family of all open neighborhoods of a point

x e X, the index set / will always be assumed partially ordered by the

relation that /jät/' if, and only if, [/¿c U¡.

In the proof of the theorem we shall employ the techniques of [2]. Let

M be a positive number such that ||</>||<2M<2, and let M' = \\<p\\ — M,

N=\M and /V'= 1 —N. It follows that for each x e X there exists at most

one y e F such that \v(x)({y})\>N, and for each y e F there is at most one

xeX such that \v(y)({x})\> M. Define Yx = {y e Y :\v(y)({x})\> M for

some x e X} and Xl = {x g X:\v(x)({y})\>N for some j> e Y}. Now let us

define p from K, into X by: p(y) = x such that \v(y)({x})\>M, and simi-

larly define t from Xl into Y by: r(x)=y such that \v(x)({y})\>N.

Proof of the Theorem. We shall fix a decreasing sequence e„ of

positive numbers with 0<e„<l and lim„ e„ = 0. lf{V,:i el} is the set of all

open neighborhoods of xeX, we call a family of functions {/,„:/e/;

n=l, 2, ■ ■ ■ }<=C0(X) an extremely regular system at x if 1 = || f„\\=f„(x)>

Bn^\fin(2)\ for every zeX\V¡.

We shall need the following simple lemmas.

Lemma 1. Let p be a finite regular Borel measure on X, v be a point

in X and {V ¡ :i e 1} be the set of all open neighborhoods of x. For each i e I,

let fi, be a measurable function on X vanishing outside V¡ with l=f(x) =

sup{\ f(z)\:z e X}. Then. lim, p(f)=p({x}).  '
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Lemma 2. Let x0e X (resp. y0 e Y) be arbitrary, and let {fin:i e I;

«=1, 2,- • •}<=/} (resp. {gjn :j E J; n= 1, 2, ■ ■ •}c B)be an extremely regular

system at x0 (resp. at y0). Now let Y(x0, n) (resp. X(y0, n)) denote the set of

ally E Y (resp. x e X) such that y (resp. x) is a cluster point of a net {y{ :i E 1}

(resp. {Xj:jEj}) with \<j>(fin)(yA\>M (resp. \^(gin){xA\>N). Then,

Y(xn,ti) (resp. X(y0, n)) is finite for every n, provided £„<A//||f/>||— \

(resp. en<\M-\).

Proof. As in the proof Proposition 1 of [2, p. 1063] one can easily

show that if ye Y(x0, n), |<^_1(ji)(x0)|^/Vf/||^||-¿ for each g e B with

M=\\g\\=g(y). Let yx,y2, • • • ,ym be m distinct points of Y(x0, n) and

let Ux, U2, ■ ■ • , Um be disjoint open sets with y¡ e \J¡. For each l^k^m

let gk e B such that M= \\gk\\ =gk(yk) and \gk(y)\ ̂ M/m for every y e Y\Uk.

Choose complex numbers Xx, ?.2, ■ ■ ■ , Xm with |Afc| = 1 and such that

¿l^teiX-To).- - - . l-m<i>~l(gm)(xn) have equal arguments. Then we get:

Il   m / m \
\2xkgk ^ </>-'(2*kgk)

2 h<Í>-\gk)(Xn)̂ m(M/U\\ - i),

from which we conclude that Y(x0, n) is finite.

To prove that X(y0, n) is finite, replace <f> by ip =

\\<f>\\N and interchange X and  Y in the above proof.

|^||^-i, M by M0 =

Lemma 3. Let x and y be arbitrary points of X and Y respectively and

{gjn7 e J\ n= 1,2,- • -]cB be an extremely regular system at y. If NX~>N

and En<_Nx — N then the inequality \v(x)({y})\ *>NX implies that x is a cluster

point of a net {x} : |^(f, J(^)|>JV; ; e J).

Proof. Let X be any element of the cluster set of the net {\<f>~l(gj„)(x)\ :

jeJ}. It is easy to show that X^\v(x)({y})\-en>Nl-(Nx-N)=N. (Use

Lemma 1 and the fact that X is the limit of a subnet of {\v(x)(gjn)\ :j e J}.)

Now it is clear that x is a cluster point of the net {xs:j eJ}, where x3 = x if

|^~1(gjn)(x)|>A/"and x¡ is any point such that |^1(gjn)(-^;)l>^ otherwise.

As in [2] the proof of the theorem is now completed by means of three

propositions.

Proposition 1.    p (resp. t) is a mapping of Yx (resp. Xx) onto X (resp. Y).

Proof. Let x be any point of X. We want to show that there exists

y e Ksuch that \v(y)({x})\>M. To this end, we fix a real number Mx with

M<MX<\ and assume that sx<m'\n{(Mx — M)/A, M/|^||—1>. Let

{Vi :i e 1} denote the set of all open neighborhoods of x and let {f u:i e I;

n=\, 2, ■ ■ -}c A bean extremely regular system at .v. Since e1</V//||t/j||— |,
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Y(x, 1) is finite (Lemma 2). Suppose that \v(y)({x})\^M for each ye

Y(x, I). Then from Lemma 1 and the inequality \v(y)(fx)\^

\[v(y)/ Vi(f1)]\+2e.1for each y e Fand each i e I, it follows that there exists

i, e/such that |v(_v)(/il)|<A/-r-4e1<M1 for all />/, and all y e Y(x, I).

Let p=v(x)— J,yey(x.i) ßvPy, where ßv = v(x)({y}). Since p is identically

zeroon F(jc, l)thereexists acompact A" in Y\Yix, 1) such that \p\(Y\K)<

(1—Mj)/4. Since K is compact and disjoint from Y(x, 1) there exists

i2 e I such that \<p(fin)(y)\^M for all i^.i2 and all y e K. For each ; e /,

i>ij and i~t.i2 we have (noting that 2»sF(*,i)  IÄI = '   and   II/m|I = ' —

¿*er(«.l)i/?vl)

1 = //l(x) = v(x)(<f>(fn))

=    2    /W Wa» + pIKWa)) + pl(Y\K)(<p(fa))
reF(.r,l)

< 2    IAI Wi + M M + 2(1 - M,)/4
»£r-(l,ll

< 2   IÄIMj + Af(l -   2   lAl) + o - Mi)/2 < L

which is absurd.

To prove that t maps A\ onto Kwe let ^=||<^||<^_1 and M0=||r/>||Af. By the

above discussion, for each y e F there exists x e X such that |y(.v)({_y})|>

M0, where y(x)=H\\v(x). Hence \v(x)({y})\>N.

Proposition 2.   If y e Yx, p(y)=x, then x e Xx and t(.y)= y.

Proof. Let y e Yx, x = p(y) and let {gjn:je J; n=l, 2, ■ ■ •}<= B be an

extremely regular system at v. We know that if either x $ Xx or x e Xx but

T(jr) Mythen \v(x)({y})\^N. Suppose that \v(x)({y})\^N. Choose a positive

number Nx such that Ar</V1<l/||^||. Then P>NX, where P =

sup{\v(x')({y})\:x' e X}. (For if we call Mx=iNx, then \\<f>\\<2M1<2,

therefore, by Proposition 1 there exists x' e X with \v(x')({y})\>Nl.) Let

e be a positive number less than Nx — N and (P—e)M>(P+e)M,Jt-e. We

may assume that e,<£/2 and ex<\M—%. Then, by Lemma 2, X(y, I) is

finite, and by Lemma 3, |v(jc')((y})|>iVi implies that x' e X(y, 1). Thus,

P=max{\v(x')({y})\:x'eX(y,l)} = \i>(Xl)({y})\ for some xxeX(y,l). It

is easy to show (by Lemma 1) that there exists j^eJ such that F—

e<K*i)(e?n)l and \v(x')(gn)\<P+e for all y^y,,'all x'eX(y, 1) and

x'^xx. Since r(xx)=y and .y,#.v, there existsyx e Y, \\¥^y and p(y1) = xl.

Let v=j'(Fi)-2^-v(*,i) *WV where o.x. = v(v,)({.y'}). Since |axJ>A/,

A/'>2^6A'(i/.i)l«x'l + ll''ll — I a», I- Since i> is identically zero on X(y, I)
there exist a compact set /CcX\X(y, 1) andy'2e./ such that \v\(X\K)^

(P+s-N)\\v\\ and ^-'(^Mx'^A/Yor allyè/s and all x' e K. Eetj0eJ
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such thaty'o^J!, j^j% and yx ^ Vjt¡. Then we obtain:

v(yx)(h) = *w/i(Xx) + 2 ^h(x') + v/K(h) + v/(X\K)(h ),
x'sX(y.l):x' ïxi

where ^ = </>~1(gjoX)- \v(yx)(h)\<s, \aXih(xx)\>M(P—e) and the modulus of

the sum of the remaining terms of the right-hand side is less than (P+e)M'.

Thus, we get (P—e)M<(P+e)M' + e, which contadicts the choice of s.

Hence, a e Xx and r(x)=y, proving the proposition.

Proposition 3.    t is a closed map of X onto Y.

Proof. Let F be a closed subset of X. Let y be any point in Y\t(F) and

let x — p(y). Now let {f„:i e I; n=l, 2, • • -}<=A be an extremely regular

system at x. We may assume that e1<min{(/Vf— M')/2, 2(|a| — M)/3),

where oi = v(y)({x}). Choose /0 e I such that \</>(f¡ x)(y)\>\oi\ — ex>M. It is

easy to see that \<j>(fhl)(y')\^2ex + M'<M for each y' et(F). Thus, for

each x e X\F there exists/x e A such that

(0 \<f>(fx)(/)\<M for all y'Er(F),
(ii) \<f>(fx)(y)\>Mwherey = r(x).
Now define Ex={y e Y: \4>(fx)(y)\^M}, x e X\F. Each Ex is a closed set.

Thus (iteex/F ^ = T(^7) 's closed in Y. Thus, t is a closed map, which

implies that p is continuous. Similarly t=/>-1 is continuous. This completes

the proof of the theorem.
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