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A GENERALIZATION OF THE BANACH-
STONE THEOREM!

BAHATTIN CENGIZ?

ABSTRACT. In this paper the following generalization of the
Banach-Stone theorem is proved: If ¢ is a linear isomorphism of
an extremely regular linear subspace of Cy(X) onto such a subspace
of Co(Y) with ||¢]| |¢~1|| <2 then X and Y are homeomorphic.

If X is a locally compact space,® we denote by Cy(X) (C5(X)) the
Banach space of continuous, complex- (real-) valued functions vanishing
at infinity on X, provided with the usual supremum norm. (We recall that
if X is actually compact, Co(X) (C5(X)) coincides with the set of all con-
tinuous, complex- (real-) valued functions on X and is denoted by C(X)
(C7(X)).) We call a closed linear subspace A4 of Cy(X) completely regular
(extremely regular) if for each x € X, each open neighborhood V of x
(and each real number ¢ with 0<e<1) there is a function f€ 4 such
that I=||f]| =/ (x)>sup{|f(x)]:x' € X\V} (I=]fl|=f(x)>eZ|f(x)| for
every x" € X\V). Clearly, every extremely regular function space is com-
pletely regular. But the converse is false. In [3] it is shown that if X has at
least three points then Cy(X) has proper completely regular linear sub-
spaces while Co(X) has a proper extremely regular linear subspace if, and
only if, X is nondispersed, that is, the ath derived set X‘* of X is nonvoid
for every ordinal number o.

The well-known Banach-Stone theorem states that if Co(X) and Cy(Y)
are isometrically isomorphic then X and Y are homeomorphic.

Myers [4] has proved that a sufficient condition for compact spaces X
and Y to be homeomorphic is that a completely regular linear subspace
of C"(X) and such a subspace of C"(Y) be isometrically isomorphic.

Cambern [2] has shown that if there is a linear isomorphism ¢ of Co(X)
onto Cy(Y), for any locally compact spaces X and Y, such that ||¢| 7] <
2, then X and Y are homeomorphic. (Amir [1] proved this result, in-
dependently, in the special case that X and Y are compact and ¢ is from
C"(X) onto C7(Y).)
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The purpose of this article is to prove the following theorem, which, in
certain special cases, combines Myers’ and Cambern’s results.

THEOREM. Let X and Y be locally compact spaces and let A and B be
extremely regular linear subspaces of Co(X) and Cy(Y) respectively. If there
is a linear isomorphism ¢ of A onto B with ||$|| 72| <2, then X and Y are
homeomorphic.

Before beginning the proof of the theorem, we establish some con-
ventions regarding notation. Let u be a finite regular Borel measure on the
locally compact space X. For a Borel set F in X, p/F(f), f€ Cy(X),
denotes the u-integral of f over F. If F=X we use u(f) instead of u/X(f).
||l denotes |u|(X), where || is the total variation of u. For a point x € X,
4, denotes the unit point mass at x.

Let X, Y, A, B and ¢ be as in the theorem. We may assume that ¢ is
norm-increasing and that ||¢~||=1. (If not, we take y=|/¢*||¢ which has
these properties.) For each y € ¥ (x € X), ¢*u, (¢*'u,) will denote the
linear functional on 4 (on B) defined by: ¢*u,(/)=¢(f)(y) ($* u(g)=
#1(g)(x)) for each f € A (g € B), where ¢* denotes the adjoint of ¢. For
eachy € Y (x € X), we fix a finite regular Borel measure »(y) on X (»(x) on
) such that »(y)(f)=¢*,(f) (+(x)(g)=$*"'u,(g)) for each f € 4 (g € B)
and () =l$*u, |l (1) =11$* 1 ]).

If {U,;:i e I} denotes the family of all open neighborhoods of a point
x € X, the index set I will always be assumed partially ordered by the
relation that i2 j if, and only if, U,< U,.

In the proof of the theorem we shall employ the techniques of [2]. Let
M be a positive number such that ||¢|| <2M <2, and let M'=||¢|—M,
N=4M and N'=1—N. It follows that for each x € X there exists at most
one y € Y such that [»(x)({y})|>N, and for each y € Y there is at most one
x € X such that [»(y)({x})|>M. Define Y,={ye Y:[v(»)({x})|>M for
some x € X} and X;={x € X:[»(x)({y})|>N for some y € Y}. Now let us
define p from Y, into X by: p(y)=x such that |[»(y)({x})|>M, and simi-
larly define = from X, into Y by: 7(x)=y such that [»(x)({y})|>N.

ProOF oF THE THEOREM. We shall fix a decreasing sequence ¢, of
positive numbers with 0<¢, <1 and lim,, ¢,=0. If {V/;:i € I'} is the set of all
open neighborhoods of x € X, we call a family of functions {f;,:i€/;
n=1,2, Y= Co(X)an extremely regular system at x if | =|| f;, | =f;,(x)>
£,Z1fin(2)| for every ze X\V,.

We shall need the following simple lemmas.

LEMMA 1. Let u be a finite regular Borel measure on X, x be a point
in X and {V;:i € I} be the set of all open neighborhoods of x. For each i€ I,
let f; be a measurable function on X vanishing outside V, with 1=f,(x)=
sup{| fi(2)l:z € X}. Then, lim; u( f;)=pu({x}).
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LEMMA 2. Let xo€ X (resp. yo€Y) be arbitrary, and let {f,,:iel;
n=1,2, -+ -y< A (resp.{g;,:j € J;n=1,2, - - -} B) be an extremely regular
system at x, (resp. at y,). Now let Y(x,, n) (resp. X(y,, n)) denote the set of
ally € Y (resp. x € X)such that y (resp. x) is a cluster point of anet {y,:i € I}
(resp. {x;:j€J) with $(fid(p)I>M (resp. |$(g,,)(x)|>N). Then,
Y(xo, n) (resp. X(yo, n)) is finite for every n, provided e,<M|||¢|—%
(resp. e, <M —1%).

PROOF. As in the proof Proposition 1 of [2, p. 1063] one can easily
show that if y € Y(x,, n), |¢71(g)(xe)|=M/l$ll—% for each ge B with
M=|gll=g(y). Let y1, s, **, ym be m distinct points of Y(x,, n) and
let Uy, U,, - - -, U, be disjoint open sets with y, € U,. For each 1=k=m
let g, € B such that M=||g,||=g,(y,) and |g.(y)| S M/m for every y € Y \U,.
Choose complex numbers 4,, 4,, -+, 4, with |4;]=1 and such that
M (g)(xe)s "+ * 5 An®H(gm)(x,) have equal arguments. Then we get:

2M > "Zlkgk = ¢_1 (éllkgk)
= 3 247 x0)| Z m(M/I$1 — B,

from which we conclude that Y(x,, n) is finite.
To prove that X(y,, n) is finite, replace ¢ by p=|¢l¢~!, M by M,=
l#llN and interchange X and Y in the above proof.

LEMMA 3. Let x and y be arbitrary points of X and Y respectively and
{gin:j€J; n=1,2,--}<= B be an extremely regular system at y. If N;>N
and &,<N,— N then the inequality |v(x)({y})| >N implies that x is a cluster
point of a net {x;:1¢7(g;)(x)|>N;jeJ}.

ProOF. Let 4 be any element of the cluster set of the net {|¢=1(g;,)(x)|:
j€J}. It is easy to show that AZ|v(x)({y})|—e,>N,—(N,—N)=N. (Use
Lemma | and the fact that 4 is the limit of a subnet of {|v(x)(g;,)|:j €J}.)
Now it is clear that x is a cluster point of the net {x;:j € J}, where x;,=x if
|¢~1(g;)(x)|> N and x; is any point such that |¢~2(g,,)(x;)| >N, otherwise.

As in [2] the proof of the theorem is now completed by means of three
propositions.

PROPOSITION 1. p (resp. ) is a mapping of Y, (resp. X,) onto X (resp. Y).

PrROOF. Let x be any point of X. We want to show that there exists
y € Y such that [»(y)({x})|> M. To this end, we fix a real number M, with
M<M,<1 and assume that & <min{(M,—M)[4, M/|$|—4%}. Let
{V;:i € I'} denote the set of all open neighborhoods of x and let {f;,:i € I
n=1,2, -+ -}< A be an extremely regular system at x. Since &, < M/||$|| —},
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Y(x, 1) is finite (Lemma 2). Suppose that |v(y)({x})|SM for each y e
Y(x,1). Then from Lemma 1 and the inequality [v(p)(f;)I=
[PV (fi)ll42¢, foreach y € Y and each i € I, it follows that there exists
iy € I such that |v(y)(f;1)| <M+4e; <M, for all i=i, and all y € Y(x, 1).
Let u=v(X)— 2> sev @) By, Where B, =v(x)({y}). Since u is identically
zeroon Y(x, 1) thereexists acompact Kin Y\ Y(x, 1) such that |u|(Y\K)<
(1—M,)/4. Since K is compact and disjoint from Y(x, 1) there exists
iy € I such that |$(f;,)(y)|=M for all i=i, and all y € K. For eachi €[,
izi, and iZi, we have (noting that >, cp.1 |8,/=1 and |u||=1—

ZveY(a:.l)Iﬂul)
1 =fz1(x) = ”(x)(‘f’(le))
= > Bum($(fu) + ulK($(f) + p/(Y\KX(f)

veV (x,1)

< 2 IBIM 4+ M ull + 201 — M,y)/4
veV (x,1)

< T pIME M (1= IR (=M<,
yeY (x,1) YEY (2.1)

which is absurd.

Toprove that+ maps X; onto Y we let y=| ¢|é~! and M,=| ¢||N. By the
above discussion, for each y € Y thereexists x € X such that |y(x)({y})|>
M,, where y(x)=||¢]»(x). Hence [»(x)({y})I>N.

PROPOSITION 2. If y € Yy, p(y)=x, then x € X, and 7(x)=}.

PrOOF. Letye Y, x = p(y)andlet{g;,;jeJ;n=1,2,---}<Bbean
extremely regular system at y. We know that if either x ¢ X, or x € X but
7(x)#y then |»(x)({y})| = N. Suppose that |»(x)({y})| =N. Choose a positive
number N; such that N<N,<1/|¢|. Then P>N,, where P=
sup{|»(x)({y}l:x" € X}. (For if we call M;=1N,, then || <2M,<2,
therefore, by Proposition 1 there exists x" € X with |»(x')({y})|>N,.) Let
¢ be a positive number less than N,—N and (P—e)M>(P+e)M’'+¢. We
may assume that £, <e¢/2 and ¢, <3M —4%. Then, by Lemma 2, X(y, 1) is
finite, and by Lemma 3, |»(x')({y})|> N, implies that x" € X(y, 1). Thus,
P=max{|»(x)({y}|:x" € X(y, D}=|v(x)({y})| for some x,€ X(y,1). It
is easy to show (by Lemma 1) that there exists j, €/ such that P—
e<|v(x)(gn)l and |v(x')(g;))|<P+e¢ for all j=j;, all x"€ X(y,1) and
x'#x,. Since 7(x;)=y and x,7#x, there exists y, € Y, y;#y and p(y,)=x,.
Let v=v(y1)— 2aexw.1) %ty Where o, =v(y)({x'}). Since |a, |>M,
M'>3cxwologl+ vl =l |. Since » is identically zero on X(y, 1)
there exist a compact set K< X\X(y, 1) and j, € J such that [»|(X\K)=
(P+e—N)|»|| and |¢7'(g;))(x")| =N for all j=j, and all x" € K. Let joeJ
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such that j,2ji, jo=j, and y, ¢ V; . Then we obtain:
wy)(h) = ah(x) + D agh(x') + v[K(h) + ¥[(X\K)(h),

z’eX (v, 1)z’ #x1
where h=¢71(g,,1). [v(y)(h)| <é, |2z, h(x1)| > M(P—¢) and the modulus of
the sum of the remaining terms of the right-hand side is less than (P+¢&)M’.
Thus, we get (P—e)M <(P+¢)M’+¢, which contadicts the choice of e.
Hence, x € X, and 7(x)=y, proving the proposition.

PROPOSITION 3. T is a closed map of X onto Y.

PrOOF. Let F be a closed subset of X. Let y be any point in Y'\7(F) and
let x=p(y). Now let {f;,:iel; n=1,2, -} A be an extremely regular
system at x. We may assume that & <min{(M—M")/2, 2(|«|—M)[3},
where a=»(y)({x}). Choose i, € I such that |¢(f; )(P)|>|x|—&,>M. Itis
easy to see that |$(f;,)(y")|=2e,+M'<M for each y’ € 7(F). Thus, for
each x € X\F there exists f, € A4 such that

(i) 1$(L)()I< M for all y' € 7(F),

(i) 16(£)(»)|>M where y=7(x).

Now define E,={y € Y:|¢(f)()I=M}, x € X\F. Each E, is a closed set.
Thus Neex,r E,=7(F) is closed in Y. Thus, 7 is a closed map, which
implies that p is continuous. Similarly 7= p~is continuous. This completes
the proof of the theorem.
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