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Abstract. If T is a strictly cyclic operator on H then H has a

direct sum decomposition //„©//2 where H¡ and H2 are invariant

under T if and only if the spectrum of T is not connected. If A is a

reducing eigenvalue for the strictly cyclic operator 7* then the

multiplicity of X is one and A is an isolated point of the spectrum of

T.

1. Introduction. In [10] Nordgren showed that an injective weighted

shift S with square summable weights has the property that any densely

defined closed operator commuting with 5 is bounded. In [7] Lambert

showed that the injective weighted shifts with the last property above are

precisely those with strictly cyclic vectors. We say e is a strictly cyclic

vector for the operator T on H provided thats/(T)e={Ae:A estf(T)} = H

where sé(T) is the smallest algebra of bounded operators which is closed

in the operator norm and contains T; if T has such a vector, then it is

a strictly cyclic operator. The recent papers [2], [3], [8], [9] deduce

various properties for strictly cyclic operators and strictly cyclic operator

algebras.

In particular the existence of reducing subspaces is deduced in [2]

and [9]. This is interesting since weighted shifts, which motivated the

study of strictly cyclic operators, rarely have reducing subspaces (see

Theorem 10 and Theorem 11 of [6]). So the existence of reducing sub-

spaces is one measure of the difference between strictly cyclic operators

and strictly cyclic weighted shifts.

In this paper we prove that a strictly cyclic operator has a nontrivial

reducing decomposition if and only if the spectrum of the operator is

not connected. Recall that the direct sum decomposition HlC}H2 = H is

a reducing decomposition for the operator T on H provided that both

Hl and H2 are invariant under T. We also show that any reducing eigen-

value for a strictly cyclic operator has multiplicity one and is an isolated

point of the spectrum. With some results of [9] this shows that only a

trivial class of strictly cyclic operators can have normal-like properties.
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2. Results. Our first theorem gives a basic new fact concerning

convergence in the operator norm. Recall that a sequence of unit vectors,

say {/„}, is an approximate eigenvector corresponding to the approximate

eigenvalue X provided that {|| ( T— X)fn \\} converges to zero. For the definition

of residual spectrum see [4]. If p(z) is the complex polynomial 2f=0 anzn

then p(z) denotes ]> ?=o d„z".

1. Theorem. Let {/„} be an approximate eigenvector for T corresponding

to the approximate eigenvalue X. If A esé(T) and {pn(z)} is a sequence of

complex polynomials such that {pn(T)} converges to A in operator norm

then {pn(X)} converges to an approximate eigenvalue of A with corresponding

approximate eigenvector {/„}. If a. belongs to the residual spectrum of T and

g is a normalized eigenvector for T* corresponding to 5 then {pn(v-)} con-

verges to an eigenvalue for A* with corresponding eigenvector g.

Proof. If X is an eigenvalue of T and/is a corresponding normalized

eigenvector then the convergence of {p„(T)} to A implies that {pn(T)f=

pn(X)f) converges to Afi This shows that/is an eigenvector for A with

corresponding eigenvalue lim pn(X).

If X is an approximate eigenvalue of T then we deduce the desired con-

clusion from Berberian's paper [1]. Using Berberian's notation, it is easy

to see that pn(T)°=pn(T°), where pn is a complex polynomial and {pn(T)}

converges to A. Of course, X is an eigenvalue of T° with corresponding

eigenvector any approximate eigenvector of T corresponding to X. Since

Berberian shows that ||5°|| = ||5||, we see that the first paragraph above

implies that {pn(X)} converges to an eigenvalue ¡x of A° whose corre-

sponding eigenvector is simply the approximate eigenvector of T corre-

sponding to X. Thus fx is an approximate eigenvalue for A with the corre-

sponding approximate eigenvector being the aforementioned approximate

eigenvector of T.

If a belongs to the residual spectrum of T then à is an eigenvalue of T*

with some corresponding normalized eigenvector g. Since {pn(T)} con-

verges to A if and only if {pn(T*)} converges to A*, it follows that {^„(5)}

converges to an eigenvalue of A*. Furthermore, g is an eigenvector

corresponding to lim pn(v).

Because of its simplicity we state the following corollary which is imme-

diate from the preceding theorem.

2. Corollary. If {pn(T)} converges in the operator norm and pn(z)

is a complex polynomial for each n then for every Xea(T) the sequence

{p„(X)} converges to a point in the spectrum of Urn pn(T).

Our Example will make it clear that it would be unreasonable to expect

all  strictly cyclic operators to  have only trivial  reducing subspaces.
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Nevertheless, the next theorem shows that some strong assertions along

these lines are true.

3. Theorem. If T is a strictly cyclic operator and o(T) is connected

then T has no nontrivial reducing decomposition.

Proof. We shall assume that the strictly cyclic operator T has a non-

trivial reducing decomposition H—HX^H2 and we shall show that o(T)

is not connected. We begin by showing that the projection of H onto Hx

along H2, which we call P, belongs to .s/(7"). Let e=el + e2 where e is a

strictly cyclic vector for T and e, e Hx, e2 e H2. There is some Ax £ .^(T)

such that Ale = e1. It is routine to see that ex and e2 are strictly cyclic

vectors for T\HX and T\H2, respectively. Thus for any/e Hx there is some

A2 estf(T) such that A2e = A2ex=f'and since

AxA2ex = AxA2e = A2Axe = A2ex

we see that AX\HX is the identity. Since Ax is zero on H2, we see that AX = P.

In order to deduce a contradiction we assume that o(T) is connected.

Since a(T) = o(TlHx)\jo(T¡H2), it must be that the intersection of a(T¡Hx)

and a(T/H2) is nonempty; take X in that intersection. Choose a sequence

of complex polynomials so that {p„(T)} converges to P. Then {pn(T¡H2)}

converges to P\H2 and by Theorem 1 {p„(X)} must converge to a point in

the spectrum of P\H2; thus lim p„(X)=0. On the other, {pn(T¡Hx)} con-

verges to P\HX and so {pn(X)} must converge to 1. This contradiction proves

that a(T¡Hx) is disjoint from a(T¡H2) and so o(T) is not connected.

4. Corollary. If T is a strictly cyclic operator then T has a nontrivial

reducing decomposition if and only if a(T) is not connected.

Proof. This follows from the theorem and the well-known Riesz

decomposition for an operator with separated spectrum. See p. 212 of

[5], for example.

Since both unilateral weighted shifts and bilateral weighted shifts have

connected spectrum (see Theorem 5 and Theorem 6 of [6]), it follows that

a strictly cyclic weighted shift has no nontrivial reducing decomposition.

It follows from Theorem 11 of [6] that if S is a bilateral weighted shift

with weights {a,,} and if {|a„|} is periodic then S is not strictly cyclic.

The corollary gives some new information about unilateral weighted

shifts which fail to be injective.

Before noting a further conclusion that follows from the proof of

Theorem 3 we record the following basic fact.

5. Lemma. If T has an eigenvalue X with multiplicity two or more then

T is not strictly cyclic.
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Proof. Let {/,,/2} be an orthonormal set of ¿-eigenvectors and let e

be a strictly cyclic vector for T. Then e has a unique representation

e = c\f\ + Clh +/s +fi

where c,, c2 are scalars,/3 is a vector from ker(T-X) orthogonal to {f,f2}

and/4 is orthogonal to ker(T-X). For any complex polynomial/? we have

p(T)e = p(X)(c1f1 + c2f2 +f3) + p(T)f

and we can choose two sequences of complex polynomials, say {/»„}, {qn},

such that {pn(T)e} converges to/, while {qn(T)e} converges to/2. Thus

{pn(X)(c1f1+c2f2+f3)+pn(T)fi} converges to/, which implies that c2 = 0,

/3=0, {PnCT)^} converges to 0 and {pn(X)cj} converges to 1. Because

{qn(X)(cifi + c2U+fù+qn(T)fù converges to /2, it must be that c,=0,

/3=0, {qn(T)f} converges to 0 and {qn(X)c2} converges to 1. These conclu-

sions are obviously inconsistent and the lemma is proved.

5. Theorem. If X is an eigenvalue for the strictly cyclic operator T

and ker(T-X) reduces T then X is an isolated eigenvalue with multiplicity

one.

Proof. The conclusion about the multiplicity is immediate from

Lemma 5. In the proof of Theorem 3 if one takes H1 = ker(T— X) and

H2=(ker(T— X))1 then one concludes that {X} = a(TjHl) is disjoint from

o(T¡H2) and thus X is an isolated point of o(T).

Using the above theorem it is possible to sharpen Theorem 2 of [2].

6. Corollary. If T is a strictly cyclic hyponormal operator then T

is a finite direct sum of one dimensional operators with each operator

corresponding to a different scalar.

Proof. By Lambert's Theorem 3.3 in [9], there is a subspace M which

reduces T to a normal operator with finite spectrum and || T/ML || >

r(TlML) if ML is nontrivial. Since TjML must be hyponormal, it follows

that M=H and this corollary follows from Theorem 5.

Finally we want to demonstrate that the trivial normal operators

mentioned in Corollary 6 are not typical of the operators described in

Theorem 5.

7. Example. Let T0 be a strictly cyclic contraction operator defined

on H0 with strictly cyclic vector/. Let //, be a one dimensional Hilbert

space and set T=T0®p,I on H0®H1 where |//|>1. Then T is strictly

cyclic.

Proof. Let Y=<r(7'0)U{lti} and note that the function/(z) defined to

be zero on a(T0) and one on {p.} is continuous on X and holomorphic
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on the interior of X. By Mergelyan's theorem there is a sequence of poly-

nomials, say {pn(z)}, such that {pn(z)} converges to/(z) uniformly on X.

Because {z:|z|^l} is a spectral set for T0 we see that {pn(T0)) must con-

verge to the zero operator. Since {pn(p)} converges to one, the sequence

{pn(T)} must converge in operator norm to the orthogonal projection

of H onto Hx; call that projection P. Since P es/(T) we see that

^(T)(g + e) => ,s/(T)P(g + e) = Hx

where g belongs to H0 and e is a unit vector in Hx.

Now we show that (Ta — p,)f is a strictly cyclic vector for To. The

Neumann series (/—p~lT0)~l = ^>J£=0 (prlT0)k converges in the operator

norm and so (7*0—¡a)~x belongs to jé(T0). Clearly

sS(T0)(T0 - p)f= s¿(T0)f= H0

and so (Tl)—p)f'is a strictly cyclic vector for T0. If e is a unit vector in

Hx then

¿t{T)(T - p)(f+ e) = ^(Tn)(T0 - p)f= Hn.

Since J>/(T)(f+e) is a linear manifold in H containing both H0 and Hx,

it follows that ,tf(T)(f+e)=H.
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