AN INVARIANT OF CONFORMAL MAPPINGS

BANG-YEN CHEN1

ABSTRACT. A result of W. Blaschke on conformal invariants of a surface is generalized.

1. Introduction. A conformal mapping on euclidean m-space E^m can be decomposed into a product of similarity transformations and inversions $\{\pi_i\}$ (Haantjes [2]). Let M be a surface in E^m . If the center of inversion π_i of the conformal mapping does not lie on the surface M for all π_i , then the conformal mapping is called a conformal mapping of E^m with respect to M. A quantity on M is called a conformal invariant if it is invariant under conformal mappings of E^m with respect to M.

The main purpose of this note is to prove the following

THEOREM. Let M be a surface in E^m with Gauss curvature K, mean curvature H and volume element dV. Then $(H^2-K) dV$ is a conformal invariant.

If the codimension is one, this theorem was given by Blaschke [1].

2. **Proof of the Theorem.** It is obvious that the quantity $(H^2-K) dV$ is invariant under similarity transformations (motions and homothetics on E^m). Hence, it suffices to prove the Theorem for inversions. Let π be an inversion on E^m such that the center of π does not lie on the surface M. We choose the origin at the center of the inversion π . Let x and \bar{x} be the position vectors of the origin surface M and the inverse surface \bar{M} respectively, and let c be the radius of inversion π . Then we have

(1)
$$\bar{x} = (c^2/r^2)x, \qquad r^2 = x \cdot x.$$

From this we find that

(2)
$$d\bar{x} = (c^2/r^2) dx - (2c^2/r^3)(dr)x,$$

(3)
$$d\bar{x} \cdot d\bar{x} = (c^4/r^4) dx \cdot dx.$$

Received by the editors January 16, 1973.

AMS (MOS) subject classifications (1970). Primary 53A05, 53B25, 53C40.

Key words and phrases. Conformal mappings, inversion, conformal invariant, mean curvature, Guass curvature.

¹ This work was supported in part by NSF under Grant GP-36684.

Hence the volume element $d\bar{V}$ of \bar{M} is given by

$$d\vec{V} = (c^4/r^4) dV.$$

Let e_3, \dots, e_{m-2} be any m-2 mutually orthogonal unit normal local vector fields on M. Then

(5)
$$\bar{e}_{\alpha} = (2(x \cdot e_{\alpha})/r^2)x - e_{\alpha}, \quad \alpha = 3, \cdots, m-2,$$

are m-2 mutually orthogonal unit normal vector fields on \overline{M} . From (2) and (5), we obtain

(6)
$$d\overline{x} \cdot d\overline{e}_{\alpha} = (2c^2(x \cdot e_{\alpha})/r^4) dx \cdot dx - (c^2/r^2) dx \cdot de_{\alpha}.$$

Combining (3) and (6), we find that, for any unit vector e of M in E^m , the principal curvatures $k_i(e)$, i=1, 2, of M with respect to e satisfy the following

(7)
$$\bar{k}_i(\bar{e}) = -(r^2/c^2)k_i(e) - (2r^2/c^2)(x \cdot e), \quad i = 1, 2,$$

where $\bar{k}_i(\bar{e})$ are the corresponding principal curvatures on \bar{M} and $\bar{e} = (2(x \cdot e)/r^2)x - e$. Hence we obtain

(8)
$$(\bar{k}_1(\bar{e}) + \bar{k}_2(e))^2 - 4\bar{k}_1(\bar{e})\bar{k}_2(\bar{e})$$

$$= (r^4/c^4)\{(k_1(e) + k_2(e))^2 - 4k_1(e)k_2(e)\}.$$

By taking averages of both sides of (8) over the spheres of unit normal vectors of \overline{M} and M at the corresponding points, we obtain

(9)
$$\bar{H}^2 - \bar{K} = (r^4/c^4)(H^2 - K),$$

where \overline{H} and \overline{K} are the mean curvature and the Gauss curvature of \overline{M} . Hence, from (4) and (9), we obtain the Theorem.

REMARK 1. If M is an orientable closed surface in E^m , then, by combining the Theorem and the well-known Gauss-Bonnet formula, we see that the integral $\int_M H^2 dV$ is a global conformal invariant. If the codimension is one, this invariant was observed by White [3].

REFERENCES

- 1. W. Blaschke, Vorlesungen über Differentialgeometrie. III, Springer, Berlin, 1929.
- 2. J. Haantjes, Conformal representations of an n-dimensional euclidean space with a non-definite fundamental form on itself, Proc. Kon. Ned. Akad. Amsterdam 40 (1937), 700-705.
- 3. J. H. White, A global invariant of conformal mappings in space, Proc. Amer. Math. Soc. 38 (1973), 162-164.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823