ON SPECIAL LINEAR CHARACTERS OF FREE GROUPS OF RANK $n \ge 4$

ALICE WHITTEMORE¹

ABSTRACT. Let F_n be a free group of rank n. In a recent paper R. Horowitz has shown that for $n \le 3$ the ideal I_n in the ring of special linear characters of F_n consisting of those polynomials in the characters which vanish for all representations of F_n by subgroups of SL(2, C) is principal. In this paper the case n=4 is investigated; it is shown that for n>3, I_n is not principal.

- 1. Introduction. The theory of two dimensional special linear characters was investigated extensively in the late nineteenth century by Fricke. More recently R. Horowitz [2] has studied the ring of special linear characters of free groups F_n ; in particular, for n=1, 2 he has shown that these rings are isomorphic respectively to the rings Z[x] and Z[x, y, z] of polynomials in one and three indeterminants with integer coefficients, and that the ring of characters of F_3 is isomorphic to the quotient ring of $Z[x_1, x_2, \dots, x_7]$ modulo a principal ideal consisting of those polynomials which vanish on the character manifold. The first theorem of this paper shows that the number of algebraic relations between the characters of F_n increases considerably with n; Theorem 2 gives some restriction on these relations for n=4.
- 2. **Preliminaries; statement of theorems.** Given a group G, denote by (G, K) the set of all representations $\rho: G \rightarrow SL(2, K)$, where K is either the field R or C of real or complex numbers, and where SL(2, K) is the group of all 2×2 matrices with entries in K and with determinant one. For $u \in G$ the character σ_u of u is defined by $\sigma_u: (G, K) \rightarrow K$, with $\rho \sigma_u = \sigma(u\rho)$ for all $\rho \in (G, K)$, where $\sigma(u\rho)$ denotes the trace of $u\rho$. The set $\{\sigma_u | u \in G\}$ generates a subring $J_{G,K}$ of the ring of all functions from (G, K) into K with the usual addition and multiplication.

Received by the editors June 19, 1972.

AMS (MOS) subject classifications (1970). Primary 20G05; Secondary 20E05, 20F55. Key words and phrases. Special linear characters, character manifold, automorphism group of a free group.

¹ This work was supported by a grant from the City University of New York and was greatly facilitated by the advice and suggestions of Wilhelm Magnus.

The following formulae for $u, v, w \in G$ [1] will be needed:

$$(2.1) \qquad \sigma_n = \sigma_{n-1},$$

$$(2.2) \quad \sigma_{uv} = \sigma_u \cdot \sigma_v - \sigma_{uv^{-1}},$$

$$(2.3) \quad \sigma_{uvw} = \sigma_u \cdot \sigma_{vw} + \sigma_v \cdot \sigma_{uw} + \sigma_w \cdot \sigma_{uv} - \sigma_u \cdot \sigma_v \cdot \sigma_w - \sigma_{uvv}.$$

Using (2.1)–(2.3) Horowitz has proved the following theorem [2]:

Let F_n denote the free group on n free generators $a_k, k=1, \dots, n$. For all $u \in F_n$, σ_u can be expressed as a polynomial with integer coefficients in the 2^n-1 characters

(2.4)
$$\sigma_a$$
, $a = a_{i_1} a_{i_2} \cdots a_{i_r}, 1 \le r \le n, 1 \le i_1 < \cdots < i_r \le n$.

As an immediate consequence we have $J_{F_n,K} \cong \mathbb{Z}_n/I_{n,K}$, where \mathbb{Z}_n is the ring of polynomials with integer coefficients in the 2^{n-1} indeterminants $i_1 i_2 \cdots i_r$, $1 \le r \le n$, $1 \le i_1 < \cdots < i_r \le n$, and $I_{n,K}$ is the ideal consisting of those polynomials in Z_n whose images in $J_{n,K}$ under the canonical homomorphism vanish for all $\rho \in (F_n, K)$. It is easily checked that $I_{n,C} \subseteq I_{n,R}$, and $m \leq n$ implies $I_{m,K} \subseteq I_{n,K}$.

Each element φ of the group A_n of automorphisms of F_n induces a map $\sigma_a \rightarrow \sigma_{a\varphi}$ of the characters σ_a of (2.4), where according to Horowitz's theorem, $\sigma_{a\varphi}$ is a polynomial $p(\sigma_a)$ in the σ_a . The corresponding assignment $i_1 i_2 \cdots i_r \rightarrow p(i_1 i_2 \cdots i_r)$ induces an automorphism of Z_n , called the automorphism induced by φ . Clearly $I_{n,K}$ is invariant under the group \mathcal{A}_n of automorphisms of \mathbf{Z}_n induced by \mathbf{A}_n . A set of generators for \mathbf{A}_n is given by A, B, C, D, where the image of a generator a_k of F_n under each of these automorphisms is given by Table 1 [3, p. 164]:

TABLE 1

Let α , β , γ , δ denote the automorphisms of \mathcal{A}_n induced by A, B, C, Drespectively. Finally, if $w = a_{j_1}^{\pm 1} a_{j_2}^{\pm 1} \cdots a_{j_k}^{\pm 1}$ is any nonempty word in the free generators a_1, \dots, a_n of F_n , denote σ_w by $\sigma_{\pm i_1 \pm i_2 + \dots \pm i_k}$. If $1 \le i < j < 1$ $k \le n$ by (2.3) $\sigma_{ikj} = \sigma_i \cdot \sigma_{jk} + \sigma_j \cdot \sigma_{ik} + \sigma_k \cdot \sigma_{ij} - \sigma_i \cdot \sigma_j \cdot \sigma_k - \sigma_{ijk}$; let the symbol ikj represent the polynomial $i \cdot jk + j \cdot ik + k \cdot ij - i \cdot j \cdot k - ijk$ in

TABLE 2	Ŷ	*	*	P_5	*	*	$2 \cdot p_2 \alpha - p_8$	$p_3\beta + 2 \cdot p_2\alpha^2$	$p_3 \alpha$	*	$2 \cdot p_3 \alpha - p_2 \alpha^3$	$-p_2$	$-p_4\alpha$		*	*	*	$2 \cdot p_4 \alpha + p_3 \beta \alpha$	$-(2\cdot p_5+p_4\beta\alpha^2)$	$p_4\alpha^3 - 12 \cdot p_2\alpha^3$	$+(2\cdot 12-1)p_3\alpha$	$p_2 \alpha$
	y	*	*	*	*	$p_2 + p_8$	*	*	*	$p_3 - 1 \cdot p_2 \alpha^3$	*	*	*		$p_3\beta\alpha^2+1\cdot(4\cdot p_6-p_2\alpha^3)$	$p_3etalpha^3+1\cdot p_2lpha$	$p_4 + 1 \cdot p_3 \beta$	$-(p_4+4\cdot p_1)\alpha$	$p_4\alpha^2 + 1 \cdot p_3\beta\alpha\beta$	$p_4\alpha^3+1\cdot p_3\alpha$	•	*
	β	*	$p_1 \alpha^2$	$p_1 \alpha$	*	$p_2\alpha - 2 \cdot p_8$	$p_2 - 1 \cdot p_8$	*	*	$\rho_3 \beta$	$p_3\beta\alpha^2-1\cdot p_2\alpha^3+4\cdot p_2$	p_3	$p_3\beta\alpha+3\cdot p_2\alpha^3$	$-4 \cdot p_2 \alpha^2$	$p_3\alpha - 2 \cdot p_2\alpha^3$ $-4 \cdot p_3\alpha + 2 \cdot 4 \cdot p_3$	$p_3\beta\alpha^3-2\cdot p_2+1\cdot p_2\alpha$	q_1	q_2	q_3	q_4	•	*
	ಶ	$p_1\alpha$	$p_1\alpha^2$	$p_1\alpha^3$	p_1	$p_2\alpha$	$p_2\alpha^2$	$p_2\alpha^3$	p_{z}	$p_3\alpha$	p_3	$p_3 \beta \alpha$	$p_3 \beta \alpha^2$		$p_3etalpha^3$	$\beta_{s}d$	$p_4\alpha$	$p_4\alpha^2$	$p_4\alpha^3$	p_4	;	*
		p_1	$p_1\alpha$	$p_1\alpha^2$	$p_1\alpha^3$	p_2	$p_2\alpha$	$p_2 \alpha^2$	$p_2\alpha^3$	p_3	$p_3\alpha$	$p_3\beta$	$p_3 eta \alpha$		$p_3etalpha^2$	$p_3etalpha_3$	p_4	$p_4\alpha$	$p_4\alpha^2$	$p_4\alpha^3$		P_8

Z_{m} . We can now state:

THEOREM 1. In \mathbb{Z}_4 , the set of polynomials

$$p_{1} = -123 \cdot 132 + 1^{2} + 2^{2} + 3^{2} + (12)^{2} + (13)^{2} + (23)^{2}$$

$$-1 \cdot 2 \cdot 12 - 1 \cdot 3 \cdot 13 - 2 \cdot 3 \cdot 23 + 12 \cdot 13 \cdot 23 - 4,$$

$$p_{2} = 1 \cdot 1234 + 243 - 234 - 12 \cdot 134 + 13 \cdot 124 - 14 \cdot 123$$

$$-1 \cdot 3 \cdot 124 + 3 \cdot 12 \cdot 14,$$

$$p_{3} = 13 \cdot 1234 - 123 \cdot 134 - 1 \cdot 124 + 12 \cdot 14 - 2 \cdot 4 + 2(24)$$

$$-3 \cdot 234 + 23 \cdot 34,$$

$$p_{4} = 132 \cdot 1234 - 12 \cdot 23 \cdot 134 - 23 \cdot 234 + 1 \cdot 3 \cdot 134 - 13 \cdot 134$$

$$-12 \cdot 124 + 2 \cdot 23 \cdot 34 + 2 \cdot 12 \cdot 14 + 2 \cdot 24 - 1 \cdot 14$$

$$-3 \cdot 34 + 2(4),$$

$$p_{5} = (1234)^{2} - 1234(4 \cdot 123 + 3 \cdot 124 + 12 \cdot 34 - 3 \cdot 4 \cdot 12)$$

$$+ (123)^{2} + (124)^{2} + (12)^{2} + (34)^{2} + 3^{2} + 4^{2} - 4 \cdot 12 \cdot 124$$

$$-3 \cdot 12 \cdot 123 - 3 \cdot 4 \cdot 34 + 34 \cdot 123 \cdot 124 - 4,$$

$$p_{6} = 2(1234) + (1 \cdot 2 - 12)34 + (1 \cdot 4 - 14)23 + (13 - 1 \cdot 3)24$$

$$-1 \cdot 234 - 2 \cdot 134 - 4 \cdot 123 + 3 \cdot 142$$

together with their images

$$\{p_j\alpha^i \mid i=1,2,3,j=1,2,4\} \cup \{p_3\alpha\} \cup \{p_3\beta\alpha^i \mid i=0,1,2,3\}$$

generate an ideal I which is (i) invariant under \mathcal{A}_4 ; (ii) contained in $I_{4,K}$.

Theorem 1 contrasts sharply with Horowitz's results that $I_{1.K} = I_{2.K} = \{0\}$, and $I_{3,K}$ is the principal ideal generated by p_1 . Since $I_{m,K} \subseteq I_{n,K}$ for $m \le n$, the above result indicates the complexity of the ideals $I_{n,K}$ for $n \ge 4$. On the other hand, the relations in $I_{F_4,K}$ are restricted by

- THEOREM 2. Let $p \in I_{4,R}$ be a polynomial of degree 0 in the indeterminants $i_1 i_2 \cdots i_r$ of length r > 2 and of nonzero degree in at most nine of the ten indeterminants of length $r \le 2$. Then $p \equiv 0$.
- 3. **Proof of Theorem 1.** Table 2 showing the images of the generating polynomials for I under the automorphisms α , β , δ , γ can be verified by direct calculation using (2.1)–(2.3) and the defining relations for $A_4[3, p. 164]$. The symbols \pm^* indicate that a given polynomial is either fixed or sent to its negative by a given automorphism. The images of p_5 and the polynomials q_i (i=1,2,3,4) of Table 2 because of their length, are written separately.

$$p_{5}\alpha = p_{5} + 1 \cdot p_{4}\alpha - 3 \cdot p_{4}\alpha^{3} - 34 \cdot p_{3}\beta\alpha^{3} - 1 \cdot 34p_{2}\alpha$$

$$+ 14 \cdot (p_{3}\beta + 2 \cdot p_{2}\alpha^{2}),$$

$$p_{5}\beta = p_{5} + [1 \cdot (1 \cdot p_{1}\alpha + p_{4}\alpha + p_{4}\beta\alpha) + 4 \cdot (4 \cdot p_{1} + p_{4} + p_{4}\alpha^{3}\beta\alpha)]\alpha$$

$$+ 1 \cdot 2 \cdot (p_{3}\beta\alpha + p_{3}\beta\alpha\beta + 34 \cdot p_{6}),$$

$$p_{5}\gamma = p_{5} + 1 \cdot [(4 \cdot p_{1} + p_{4} + p_{4}\alpha^{3}\beta\alpha)\alpha],$$

$$p_{5}\delta = 2^{2} \cdot p_{5} + (4 \cdot p_{4}\beta + 4 \cdot p_{4} + p_{1})\alpha^{2},$$

$$q_{1} = p_{4} + (1 \cdot 2 - 12)p_{2}\alpha^{2} - 2p_{3} + 1 \cdot p_{3}\beta,$$

$$q_{2} = 1 \cdot 4 \cdot p_{2}\alpha^{2} + 3 \cdot p_{3}\alpha\beta$$

$$- (p_{4}\beta\alpha^{2} + 2 \cdot p_{1}\alpha^{2} + 4 \cdot p_{3} + 1 \cdot p_{3}\beta\alpha + 1 \cdot 34 \cdot p_{6}),$$

$$q_{3} = [23 \cdot p_{2} + (1 \cdot 2 - 12)p_{2}\alpha^{2} - p_{4}\beta - 4 \cdot p_{1} - 2 \cdot p_{3}]\alpha - 2 \cdot 34 \cdot p_{6},$$

$$q_{4} = p_{4}\alpha^{3} + 2 \cdot p_{3}\beta\alpha^{2} + 2 \cdot 4 \cdot p_{2} - 1 \cdot p_{3}\alpha - 12 \cdot p_{2}\alpha^{3}.$$

It is evident from the table that I is invariant under \mathscr{A}_4 . In order to show $I \subseteq I_{4,K}$, because of the relations $p_2 = -p_3\beta\delta$, $p_4 = p_3\beta\alpha\delta\alpha^{-1}$, $p_5 = -(p_4\alpha^2\delta + p_4\beta\alpha^2)$, $p_1 = p_5(\alpha_1^2\delta)^{-1}$, $p_6 = p_2\alpha\delta^{-1}$ and the fact that $I_{4,K}$ is invariant under \mathscr{A}_4 , one need only show $p_3 \in I_{4,K}$. For this purpose let $u = a_1a_2a_3$, $v = a_1a_3a_4$. By (2.2) we have

$$(3.1) 0 = -\sigma_{123} \cdot \sigma_{134} + \sigma_{123134} + \sigma_{23-3-4}.$$

Rewriting σ_{23-3-4} by (2.1) and (2.2) one obtains

(3.2)
$$\sigma_{23-3-4} = \sigma_{23}\sigma_{34} - \sigma_3 \cdot \sigma_{234} + \sigma_{24}.$$

Expansion of σ_{123134} via (2.3) with $u=a_1a_2$, $v=a_3a_1a_3$, $w=a_4$ using (2.1), (2.2) yields

(3.3)
$$\sigma_{123134} = \sigma_{13} \cdot \sigma_{1234} - \sigma_{1} \cdot \sigma_{124} + \sigma_{12} \cdot \sigma_{14} - \sigma_{2} \cdot \sigma_{4} + \sigma_{24}$$

Substitution of (3.2), (3.3) into (3.1) yields the desired result.

4. **Proof of Theorem 2.** We may assume without loss of generality that p has degree 0 in either of the indeterminants 4 or 34. Indeed, if p has degree 0 in one of the remaining eight indeterminants of length $k \le 2$, p may be replaced by $p\alpha^{\lambda}\beta^{\epsilon}$ for suitable $\lambda=0,1,2,3,\ \epsilon=0,1$. Both cases are treated simultaneously.

Define a representation $\rho: F_4 \rightarrow SL(2, \mathbb{R})$ as follows:

$$a_1\rho = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_1^{-1} \end{bmatrix}, \quad a_2\rho = \begin{bmatrix} \lambda_2 & \lambda_2\lambda_3 - 1 \\ 1 & \lambda_3 \end{bmatrix}, \quad a_3\rho = \begin{bmatrix} \lambda_4 & \lambda_5 \\ \lambda_6 & \frac{\lambda_5\lambda_6 + 1}{\lambda_4} \end{bmatrix},$$

$$a_4\rho = \begin{bmatrix} \lambda_7 & \lambda_8 \\ \lambda_9 & \frac{\lambda_8\lambda_9 + 1}{\lambda_7} \end{bmatrix}, \quad \lambda = (\lambda_1, \dots, \lambda_9) \in \mathbf{R}_9, \lambda_1, \lambda_4, \lambda_7 \text{ nonzero.}$$

The two systems of functional equations $\lambda(\rho\sigma_i)=\xi_i$, i=1, 2, 3, 12, 13, 14, 23, 24, k, k=4 and k=34, define transformations F_1 and F_2 respectively from a subregion of R_9 into R_9 . Let $\bar{\lambda} \in R_9$ have coordinates $\lambda_1=2, \lambda_i=1, 1 < i \leq 9$. The Jacobeans of both F_1 and F_2 evaluated at $\bar{\lambda}$ are nonzero. It follows from the implicit function theorem that there exist neighborhoods U_i of $\bar{\lambda}F_i$ and transformations $G_i:U_i \rightarrow R_9$ (i=1,2) with the property that $\xi(G_i \circ F_i)=\xi$ for all $\xi \in U_i$. Accordingly, for all $\xi \in U_i$ there exist representations $\rho_i \in (F_4, R)$ (i=1, 2) such that $\xi=(\rho_1\sigma_1, \cdots, \rho_1\sigma_{24}, \rho_1\sigma_4), i=1; \xi=(\rho_2\sigma_1, \cdots, \rho_2\sigma_{24}, \rho_2\sigma_{34}), i=2.$

Since $p \in I_{4,R}$ we have $p(\xi)=0$ for all $\xi \in U_i$, which implies $p\equiv 0$.

REFERENCES

- 1. R. Fricke and F. Klein, Vorlesungen über die Theorie der automorphen Functionen. Vol. 1, Teubner, Leipzig, 1897.
- 2. R. Horowitz, Characters of free groups represented in the two-dimensional special linear group, Comm. Pure Appl. Math. 25 (1972), 635-650.
- 3. W. Magnus, A. Karass and D. Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Pure and Appl. Math., vol. 13, Interscience. New York, 1966. MR 34 #7617.

DEPARTMENT OF MATHEMATICS, HUNTER COLLEGE (CUNY), NEW YORK, NEW YORK 10021