CERTAIN SUBSETS OF PRODUCTS OF θ -REFINABLE SPACES ARE REALCOMPACT

PHILLIP ZENOR

ABSTRACT. It is shown that the normal T_1 -space X is real-compact if and only if (a) each discrete subset of X is real-compact and (b) X can be embedded as a closed subset in the product of a collection of regular θ -refinable spaces.

We will say that a space X has property (*) if it is true that each discrete subset of X is realcompact; i.e., the cardinality of each discrete subset of X is nonmeasurable. In [5], the author has shown that a normal T_1 -space X is realcompact if and only if X has property (*) and X can be embedded as a closed subspace in the product of a collection of subparacompact spaces and metacompact spaces. S. Mrówka suggested to the author that there should be a nontrivial class of spaces \mathcal{P} containing the class of subparacompact spaces and the class of metacompact spaces so that a normal space X is realcompact if and only if X has property (*) and X can be embedded as a closed subspace in a product of members of \mathcal{P} . It is the purpose of this paper to show that the class of θ -refinable spaces, introduced by Worrell and Wicke in [4], is such a class.

Recall that a space X is θ -refinable if it is true that if $\mathscr V$ is an open cover of X then there is a sequence $\mathscr V_1, \mathscr V_2, \cdots$ of open covers of X that refine $\mathscr V$ such that if $x \in X$, then there is an integer i such that only finitely many members of $\mathscr V_i$ contain x. Clearly, any metacompact space is θ -refinable. It is shown in [1] that any subparacompact space is θ -refinable.

Our notation will follow that of [2].

Lemma 1 [5]. Suppose that X is a T_1 -space and $\mathscr E$ is a class of T_3 -spaces such that the topology on X is the weak topology induced by $C(X,\mathscr E)$. Then X can be embedded as a closed subspace in the product of a collection of members of $\mathscr E$ if and only if it is true that if $\mathscr F$ is a free ultrafilter of closed subsets of X, then there are a member f of $C(X,\mathscr E)$ and an open cover $\mathscr U$ of range (f) such that $\{f^{-1}(U): U \in \mathscr U\}$ refines $\{(X-F): F \in \mathscr F\}$.

Lemma 2 (Theorem 18, [3]). If $\mathcal U$ is an open cover of the space X, then

Received by the editors January 15, 1973.

AMS (MOS) subject classifications (1970). Primary 54D60, 54D20.

Key words and phrases. Realcompact, θ -refinable.

there is a discrete subspace H of X such that

- (i) $\{st(x, U): x \in H\}$ covers X, and
- (ii) no member of *U* contains two points of *H*.

THEOREM. The following conditions on a normal T_1 -space X are equivalent: (1) X is realcompact.

- (2) X has property (*) and X can be embedded as a closed subset in the product of a collection of regular θ -refinable spaces.
- (3) X has property (*) and if \mathcal{F} is a free ultrafilter of closed subsets of X, then there is a sequence \mathcal{W}_1 , \mathcal{W}_2 , \cdots of open covers of X refining $\{X-F|F\in\mathcal{F}\}$ such that if $x\in X$ then there is an integer i such that only finitely many members of \mathcal{W}_i contain x.
- PROOF. (1) implies (2). This is obvious since every closed subset of a realcompact space is realcompact and the real line is θ -refinable.
- (2) implies (3). Let \mathscr{F} be a free ultrafilter of closed subsets of X. According to Lemma 1, there are a θ -refinable space Y, an open cover \mathscr{V} of Y, and a continuous function f taking X into Y such that $f^{-1}(\mathscr{V}) = \{f^{-1}(V): V \in \mathscr{V}\}$ refines $\{X F | F \in \mathscr{F}\}$. Since Y is θ -refinable, there is a sequence $\mathscr{V}_1, \mathscr{V}_2, \cdots$ of open covers of Y refining \mathscr{V} such that if $y \in Y$, there is an integer i such that only finitely many members of \mathscr{V}_i contain x. Clearly, if for each i, $\mathscr{W}_i = f^{-1}(\mathscr{V}_i)$, the sequence $\mathscr{W}_1, \mathscr{W}_2, \cdots$ satisfies condition (3) of our theorem.
- (3) implies (1). Suppose that X satisfies condition (3) but X is not realcompact. Let $\mathscr Z$ be a free Z-ultrafilter in X with the countable intersection property. Let $\mathscr F$ be the ultrafilter of closed subsets of X that contains $\mathscr Z$ ($\mathscr F$ is uniquely determined by $\mathscr Z$ since X is normal). Let $\mathscr W_1, \mathscr W_2, \cdots$ be a sequence of open covers of X refining $\{X-F:F\in\mathscr F\}$ such that if $x\in X$ then there is an i such that only finitely many members of $\mathscr W_i$ contain x. For each pair (i,j) of positive integers, let $H(i,j)=\{x\in X|x$ is contained in at most j members of $\mathscr W_i\}$. It is easy to see that each H(i,j) is closed. Let $\mathscr H$ denote collection of all H(i,j)'s. Let $\mathscr H_1=\mathscr H-\mathscr F$ and $\mathscr H_2=\mathscr H-\mathscr H_1$. For each H in $\mathscr H_1$, let F(H) denote a member of $\mathscr F$ that does not intersect H. Since X is normal, there is a zero-set Z(H) containing F(H) that does not intersect H. For each H in $\mathscr H_1$, Z(H) is in $\mathscr L$. It must be the case that $\mathscr H_2$ is not empty; otherwise, $\{Z(H): H\in\mathscr H_1\}$ would be a countable subcollection of $\mathscr L$ with no common part which would be a contradiction.

For each H=H(i,j) in \mathscr{H}_2 , there is, by Lemma 2, a discrete subset K(H) of H such that no member of \mathscr{W}_i contains two members of K(H) and $\{\operatorname{st}(x, W_i) | x \in K(H)\}$ covers H. Note that K(H) is infinite for otherwise, the collection $\{W \in \mathscr{W}_i : W \cap K(H) \neq \varnothing\}$ would be finite and $\bigcap \{X-W : W \in \mathscr{W}_i, W \cap K(H) \neq \varnothing\}$ would be a member of \mathscr{F} that would

not intersect H and this would contradict the assumption that $H \in \mathcal{H}_2$. Let $\mathcal{W}'_i = \{W \in \mathcal{W}_i : W \cap K(H) \neq \varnothing\}$. Since K(H) is infinite and each point of H is contained in only finitely many members of \mathcal{W}_i , it must be true that the cardinality of K(H) is the same as the cardinality of \mathcal{W}'_i . Let φ be a one-to-one function from K(H) onto \mathcal{W}'_i . For each F in \mathcal{F} , let $M(F) = \{x \in K(H) : \varphi(x) \cap (F \cap H) \neq \varnothing\}$. Clearly, $\{M(F) : F \in \mathcal{F}\}$ has the finite intersection property; and so, there is an ultrafilter \mathcal{M} of subsets of K(H) that contains $\{M(F) : F \in \mathcal{F}\}$. Since, for each $x \in K(H)$, it is true that $X - \varphi(x) \in \mathcal{F}$, it is true that \mathcal{M} is a free ultrafilter of subsets of K(H). Since K(H) is a discrete subset of X, K(H) is realcompact; and so, there is a countable subcollection $\{M_i\}$ of members of \mathcal{M} with no common part.

CLAIM 1. If $M \in \mathcal{M}$, there is a member F of \mathcal{F} that is a subset of $\bigcup_{x \in M} \varphi(x)$.

The argument for this is the same as the argument for Claim 1 in the proof of the theorem in [5].

Claim 2. $\left[\bigcap_{i=1}^{\infty} \left(\bigcup_{x \in M_i} (\varphi(x))\right)\right] \cap H = \emptyset$.

Again, the argument for this is the same as the argument for Claim 2 in the proof of the theorem in [5].

By Claim 1, for each integer n, there is a member F_n of \mathscr{F} such that $F_n \subset \bigcup_{x \in M_n} (\varphi(x))$. Since X is normal, there is a zero-set Z_n such that $F_n \subset Z_n \subset \bigcup_{x \in M_n} (\varphi(x))$. It follows from Claim 2 that $\bigcap (Z_n \cap H) = \varnothing$. Thus, for each $H \in \mathscr{H}_2$ there is a countable subcollection $\mathscr{Z}(H)$ of \mathscr{Z} such that $[\bigcap_{Z \in \mathscr{Z}(H)} (Z)] \cap H = \varnothing$. Thus, we have $\{Z(H) | H \in \mathscr{H}_1\} \cup (\bigcup_{H \in \mathscr{H}_2} \mathscr{Z}(H))$ is a countable subcollection of \mathscr{Z} with no common part which contradicts the assumption that \mathscr{Z} has the countable intersection property.

NOTE. In [5], the author asked if every normal metacompact space is topologically complete (in the sense of Dieudonné). R. Haydon offers an example of a normal metacompact space which is not complete in [6].

REFERENCES

- 1. D. K. Burk, On p-spaces and $W\Delta$ -spaces, Pacific J. Math. 35 (1972), 285-296.
- 2. L. Gillman and M. Jerison, Rings of continuous functions, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1960. MR 22 #6994.
- 3. R. L. Moore, Foundations of point set topology, Amer. Math. Soc. Colloq, Publ., vol. 13, Amer. Math. Soc., Providence, R.I., 1932.
- 4. J. M. Worrell, Jr. and H. H. Wicke, Characterizations of devolopable topological spaces, Canad. J. Math. 17 (1965), 820-830. MR 32 #427.
- 5. P. L. Zenor, Certain subsets of products of metacompact spaces and subparacompact spaces are realcompact, Canad. J. Math. 24 (1972), 825-829.
- 6. R. Haydon, Compactness in spaces of measures and measurecompact spaces (submitted for publication).

DEPARTMENT OF MATHEMATICS, AUBURN UNIVERSITY, AUBURN, ALABAMA 36830