
proceedings of the
american mathematical society
Volume 40. Number 2. October 1973

CERTAIN   SUBSETS  OF  PRODUCTS  OF  6-REFINABLE
SPACES  ARE   REALCOMPACT

PHILLIP   ZENOR

Abstract. It is shown that the normal T'espace X is real-

compact if and only if (a) each discrete subset of X is realcompact

and (b) Jfcan be embedded as a closed subset in the product of a

collection of regular 0-refinable spaces.

We will say that a space X has property (*) if it is true that each dis-

crete subset of X is realcompact; i.e., the cardinality of each discrete

subset of X is nonmeasurable. In [5], the author has shown that a normal

7\-space X is realcompact if and only if X has property (*) and X can be

embedded as a closed subspace in the product of a collection of sub-

paracompact spaces and metacompact spaces. S. Mrówka suggested to

the author that there should be a nontrivial class of spaces '3P containing

the class of subparacompact spaces and the class of metacompact spaces

so that a normal space X is realcompact if and only if X has property (*)

and X can be embedded as a closed subspace in a product of members of

8P. It is the purpose of this paper to show that the class of 6-refinable

spaces, introduced by Worrell and Wicke in [4], is such a class.

Recall that a space X is 6-refinable if it is true that if 'f is an open cover

of X then there is a sequence "flt i^2, ■ • • of open covers of X that refine

i^ such that if x e X, then there is an integer / such that only finitely many

members of Vt contain x. Clearly, any metacompact space is 6-refinable.

It is shown in [1] that any subparacompact space is O-refinable.

Our notation will follow that of [2].

Lemma 1 [5]. Suppose that X is a Tx-space and S is a class of T3-

spaces such that the topology on X is the weak topology induced by C(X, if).

Then X can be embedded as a closed subspace in the product of a collection

of members of ê if and only if it is true that if ÍF is a free ultrafilter of

closed subsets of X, then there are a member f of C(X, S) and an open cover

°U of range (f) such that {f~x(V) :Ve<%} refines {(X-F) :Fe^}.

Lemma 2 (Theorem 18, [3]).    If ÏÏ is an open cover of the space X, then
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there is a discrete subspace H of X such that

(i) {st(x, U):x e H] covers X, and

(ii) no member of °i¿ contains two points of H.

Theorem. The following conditions on a normal Tx-space X are equiva-

lent: (1) X is realcompact.

(2) X has property (*) and X can be embedded as a closed subset in the

product of a collection of regular 6-refinable spaces.

(3) X has property (*) and if F is a free ultrafilter of closed subsets ofX,

then there is a sequence Wx, ~W2, • • • of open covers of X refining

{X—F\FeF} such that if xeX then there is an integer i such that only

finitely many members of "W\ contain x.

Proof. (1) implies (2). This is obvious since every closed subset of a

realcompact space is realcompact and the real line is ö-refinable.

(2) implies (3). Let F be a free ultrafilter of closed subsets of X.

According to Lemma 1, there are a ö-refinable space Y, an open cover

'f of Y, and a continuous function/taking X into Y such that/_1(oF") =

{f-\V):V eV} refines {X-F\FeF}. Since Y is ö-refinable, there is a

sequence "Vx, y*2, • • • of open covers of Y refining "K such that if y e Y,

there is an integer / such that only finitely many members of lF\ contain x.

Clearly, if for each ;', Wi=f-1(irA, the sequence ÍTX, T^2, • ■ • satisfies

condition (3) of our theorem.

(3) implies (1). Suppose that X satisfies condition (3) but X is not

realcompact. Let 2£ be a free Z-ultrafilter in X with the countable inter-

section property. Let F be the ultrafilter of closed subsets of X that

contains 2£ (F is uniquely determined by 2£ since X is normal). Let

"^i> ^"«. - " ' be a sequence of open covers of X refining {X—F.FeF}

such that if x e X then there is an /' such that only finitely many members

of iVi contain x. For each pair (i,j) of positive integers, let H(i,j) =

{x 6 X\x is contained in at most y members of #"J. It is easy to see that

each Ff(i,j) is closed. Let Jf denote collection of all H(i,j)"s. Let F^x =

Jf'-F and M'2=M'-^X. For each Hin Jt°x, let F(H) denote a member

of F that does not intersect H. Since X is normal, there is a zero-set

Z(H) containing F(H) that does not intersect H. For each H in Ff\,

Z(H) is in 2?. It must be the case that ,W2 is not empty; otherwise,

{Z(H):He Jf x} would be a countable subcollection of 3£ with no

common part which would be a contradiction.

For each H=H(i,j) in ¿tf'2, there is, by Lemma 2, a discrete subset

K(H) of H such that no member of 'Wi contains two members of K(H)

and {st(x, \VA\x e K(H)} covers H. Note that K(H) is infinite for other-

wise, the collection {We #"",•: WC\K(H)j£ 0} would be finite and

fl {X- W: WeiTi, WnK(H)^ 0} would be a member of & that would
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not intersect H and this would contradict the assumption that H e Jf 2.

Let W'i={We H\:rVnK(H)y¿0}. Since K(H) is infinite and each

point of H is contained in only finitely many members of 'Wt, it must be

true that the cardinality of K(H) is the same as the cardinality of W'f.

Let cp be a one-to-one function from K(H) onto #"<. For each F in F,

let M(F)={x e K(H):<p(x)n(FnH)9é 0}. Clearly, {M(F):Fe&} has

the finite intersection property; and so, there is an ultrafilter J( of subsets

of K(H) that contains {M(F):Fe J*"}. Since, for each x e K(H), it is true

that X—cp(x)e!F, it is true that J( is a free ultrafilter of subsets of

K(H). Since A^(FT) is a discrete subset of X, K(H) is realcompact; and so,

there is a countable subcollection {A/J of members of ^ with no common

part.

Claim 1. If M e ^, there is a member F of F that is a subset of

Uk.11 <p(x).

The argument for this is the same as the argument for Claim 1 in the

proof of the theorem in [5].

Claim 2.    [fijii (LU*, (9>(*)))]n/i= 0.
Again, the argument for this is the same as the argument for Claim 2

in the proof of the theorem in [5].

By Claim 1, for each integer n, there is a member Fn of ¡F such that

FncUxeMn (<p(x)). Since X is normal, there is a zero-set E„ such that

Fn<=Znc\JxeMn (cp(x)). It follows from Claim 2 that f) (ZnnH)=0.

Thus, for each He^f2 there is a countable subcollection 2Í(H) of ¡Z

such that [C)zS2-(H)(Z)]nH=0. Thus, we have {Z(H)\He Jf\}U

(Uffe-*" 3£(H)) is a countable subcollection of 2£ with no common part

which contradicts the assumption that 2£ has the countable intersection

property.

Note. In [5], the author asked if every normal metacompact space

is topologically complete (in the sense of Dieudonné). R. Haydon offers

an example of a normal metacompact space which is not complete in [6].
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