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FURTHER   EXTENDING  A   COMPLETE

CONVEX  METRIC

ROBERT   A.   DOOLEY1

Abstract. A metric D is convex if for every two points x, z there

is a third point y such that D(x, y) + D(y, z) = D(x, z). A general-

ized continuum is a connected, locally compact, metric space. Let

M¡ be a nonempty space with a complete convex metric D, and let

M2 be a nonempty locally connected generalized continuum. The

following condition is shown to be necessary and sufficient for

there to exist a complete convex metric for M¡yJM2 that extends

D¡: AÍ,nM2 is a nonempty subspace of both Afi and M2 which is

closed in M2 and whose M2 boundary is closed in M¡.

1. Introduction. In this paper we continue the investigation of a

previous article [5], regarding the extendability of complete convex

metrics. In [5] basic definitions are provided, and a sufficient condition

is obtained for the extension of a given complete convex metric across a

locally connected generalized continuum. The aim of the present paper is

to weaken that sufficient condition so that it is also necessary, as follows:

// Mx is a space with a complete convex metric Dx and M2 is a locally con-

nected generalized continuum, a necessary and sufficient condition that Dx

can be extended to a complete convex metric for MXV)M2 is that MxnM.¿

be a nonempty subspace of both Mx and M.¡ which is closed in M2 and whose

M2 boundary is closed in Mx. The following conventions, in addition to

those to be mentioned in §2, will be observed throughout this paper. All

given topological spaces are assumed to be nonempty. If D is a metric for

a space M, we will write D(p; e) to denote the open ball {x: D(p, x)<e}

and D(p; e) for the closed ball {x:D(p, x)^e}.

2. The union topology. The union of two topological spaces Mx and A/2

whose topologies agree on their intersection will in this paper be con-

sidered to have a certain natural topology, namely the collection t0 of all
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sets Q in MX(JM2 such that QC\Mt is open in Mt for /= 1, 2. Seen other-

wise, t0 is the largest topology on MXKJM2 for which Mx and M2 are sub-

spaces. For the spaces Mx and M2 in the propositions of this section, we

assume that their topologies do agree on their intersection and that t0 has

the meaning described above. The simple proofs of these propositions are

omitted. The claim of t0 to naturalness, at least for the purposes of this

paper, is given by (2.1).

Proposition 2.1. If MXC\M2 is M2 closed, and if the M2 boundary of

MXC\M2 is Mx closed, then MX\M2 and M2\MX are t0 separated sets.

Proposition 2.2. If MX\M2 and M2\MX are separated sets in some topol-

ogy t on MxV)M2for which Mx and M2 are subspaces, then t = t0.

Proposition 2.3. If R¡ is a M, neighborhood of a point x for ;'= 1, 2,

then x is t0 interior to RXKJR2.

Proposition 2.4. If Mx and M2 are locally compact spaces such that

MxC\M2 is closed in M2 and the M2 boundary of MxC\M2 is closed in M,,

and if MXVJM2 is Hausdorff, then MX\JM2 is locally compact.

An example of the union of two locally connected generalized continua

in the plane sheds light on both (2.4) and (2.5). If M1 = E1x (-co, 0] and

M2=(— oo, 0)x£1, we observe that the origin has neither a conditionally

compact neighborhood nor a countable local base with respect to t0.

Proposition 2.5. If MxvjM2 is both Hausdorff and first countable, then

BC\MX is Mx closed, where B is the M2 boundary of MXC\M2.

Proposition 2.6. Let Mx be a space with a complete metric Dx and let

M2 be any topological space. In order that Mx U M2 be a connected space and

admit some metric D3 extending Dx, it is necessary that MXC\M2 be a

nonempty subspace of both Mx and M2 which is closed in M2 and that the

M2 boundary of MXC\M2 be closed in Mx.

3. Segmented convex metrics. A metric is segmented convex if each

pair of its points are joined by at least one segment. It is clear that the

segmented convex metrics occupy an intermediate position between the

convex and the complete convex metrics, in that every segmented convex

metric is convex and, by a well-known theorem of M enger [8], every

complete convex metric is segmented convex. The rationals in E1 with the

euclidean metric form a convex metric space that does not admit a seg-

mented convex metric. Similarly, not every space that admits a segmented

convex metric must admit a complete convex metric; indeed, we can embed

a metric space of first category isometrically as a closed subset of a



592 R.  A.   DOOLEY [October

normed linear space, which cannot therefore be topologically complete

[1]. However, we observe the following characterization.

Theorem 3.1. If M is a locally compact space, the following statements

are equivalent :

(i) M is a locally connected generalized continuum.

(ii) M admits a complete convex metric.
...

(iii) M admits a segmented convex metric.

Proof. The proofs for (i)=>(ii) and for (ii)=>(iii) are given in [9] and

[8] respectively. For (iii)=>(i), the admission of a segmented convex

metric implies that M is connected and locally connected, since open balls

are connected. Thus, M is a locally connected generalized continuum.

In this paper, use is made of segmented convex metrics through the

following theorem.

Theorem 3.2. In a locally compact space with a segmented convex

metric, every compact metric ball is a Peano continuum.

Proof. The proof follows the general scheme of a proof in Hall and

Spencer [6, Theorem V. 6.23].

Corollary 3.3. In a locally compact space with a complete convex

metric, every closed metric ball is a Peano continuum.

Proof.    Every closed metric ball is compact [7].

4. Extension theorems. The following theorem is a stronger statement

of Theorem 1 of [5].

Theorem 4.1. Let Mx be a space with complete convex metric Dx and

let M2 be a locally connected generalized continuum with complete convex

metric D2, whose intersection with Mx is a nonempty, compact subspace of

both Mx and M2. Then for any e>0 and for any two nonempty subsets C and

H of M2 with D2(C, //U(A/1nM2))>0, there is a complete convex metric

D3for MxyjM2 that extends Dx, satisfies D3(C, H)^.s, and has the property

that if D3(x, y)<D2(x, y) for two points x, y ofM2\Mx, then x and y have a

D3 between points in Mx.

Proof. Let ó = D2(C, H<U(MxnM2)). The proof of Theorem 1 in [5],

following the construction of Bing [2], now suffices for the present

theorem, if the initial function F(x) in that proof is chosen to have a first

derivative which always exceeds both 1 and e/<5. For use in the proof of

(4.3), we note here that the function D0(x, y) defined in [5] is never less

than either D2(x, y) or (e¡ó)D2(x,y). From this fact and the definition

of the metric D3 given in [5], the desired properties of D3 readily follow.
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Given a complete convex metric for a locally compact space, not every

compact set need be contained in a compact set on which the metric is

convex; in fact, there is a noncompact generalized continuum X in the

plane that contains three points and has a complete convex metric

which is not convex on any closed proper subset of X containing those three

points [4]. The following theorem shows, however, that a locally con-

nected generalized continuum can be remetrized with a complete convex

metric for which the property in question will in fact hold.

Theorem 4.2. Let M be a locally connected generalized continuum with

complete convex metric D. Given any point p of M, there is a complete

convex metric E for M that is convex on D(p ; n) and has the property that

if D(p, x)=n then E(x, D(p; n—-§))^l,/or n=l, 2, ■ ■ ■ .

Proof. For each n, we see from (3.3) that P, = D(p; n) is a Peano

continuum; moreover, the two sets Cn = {x:D(p, x)=n) and Hn_x =

{x:D(p,x)=n—2A; are compact and disjoint. By (4.1) there is a convex

metric Ex for Px such that EX(CX, //„)!_ 1 if Cx¿¿0. By repeated use of

(4.1), a sequence Ex, E2, ■ ■ ■ of convex metrics respectively for Px, P2, ■ ■ •

may be defined inductively so that En+X extends E„ and En(C,„ Hn_x)~^.l

whenever Cnj±0. If E is the union of all these metrics E„, then F is a

segmented convex metric for the space M. Moreover, since E(Cn, p)^n as

long as C„# 0 and consequently every E bounded set is also D bounded,

then E is complete.

Theorem 4.3. Let Mx be a space with a complete convex metric Dx and

let M2 be a locally connected generalized continuum. In order for there to be

a complete convex metric for MXVJM2 that extends Dx, it is necessary and

sufficient that MXC\M2 be a nonempty subspace of both Mx and M2 which is

closed in M2 and that the M2 boundary of MXC\M2 be closed in Mx.

Proof. Necessity is given by (2.6). For the proof of sufficiency, letp be

in MxCiM2 and let D be any complete convex metric for M2. By (4.2) there

is a complete convex metric D2 for M2 whose restriction D2 to Pn =

D(p;n) is convex, and which has the property that if D(p,x)=n then

D2(x, D(p; n-i»! I, for n= 1, 2, ■ • ■ .

Since MXC\M2 is closed in M2, then MXC\PX is compact. Hence, (4.1)

may be applied by replacing Mx, Dx, M2, and D2 by Mx, Dx, Px, and D\

respectively in the hypothesis; let D\ and D\ be the D0 and D3 given

respectively by the proof and conclusion. (The sets C and H in (4.1) will

not be used here.) We note that D\(u, v)~^.D\(u, v) = D2(u, v) whenever

D\(u, v) is defined, and that if x lies in PX\MX and y in Mx, D\(x, y) is

defined to be the infimum of sums Z)J(x, a) + Dx(a, y) for certain points a

in the Px boundary of Mx r\Px.
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Proceeding inductively, suppose that D3 is a complete convex metric for

Mx\JPn which extends Dx. Again apply (4.1) by replacing Mx, Dx, M2,

and D2 by M, UF„, Dl, Pn+X, and D2+1 respectively, and obtain Dl+X and

D3+l in place of D0 and D3. We have that D3+1 is a complete convex metric

for Mx\JPn that extends D3, with the property that whenever D3+1(x, y)<

JD2+\x,y) for points x, y of Pn+x\(MxVJPn), then x and y have a D3+1

between point in Mx<uPn. Again, we should note that D%+1(u, v)^.

D2+1(u, v) = D2(u, v) whenever Dq+1(u, v) is defined; moreover, for points

x in Pn+x\(MxKjPn) and y in MxVJPn, the value D3+1(x,y) is defined to be

an infimum of sums Dl+X(x, a) + D3(a,y) for certain points a in the Pn+X

boundary of (MXUP„) nPn+x.

Define D3 as the union of the metrics D3, and for convenience let P0—

MxnPx and D3=DX. It is immediate that D3 is a segmented convex

metric which extends £>,. Assertions (iv) and (vi) below complete the

proof.

(i) For points x in Pn, y in Mx, and for ?/>0, there is a point z in

MxnPn suchthat D3(x,y) + t]>D2(x, z) + Dx(z, y). Ifxis not in Mx, then

z can be chosen in the Pn boundary of MxnPn.

(ii) For points x in Pn+k,y in Mx\JPk (k = 0, 1, • ■ ■ ; n= 1, 2, • ■ •), and

for t]>0, there is a point z in (A/1U/>fc)ni>„+,, such that D3+k(x,y) + i¡>

D2(x,z) + Dk(z,y).

(¡ii) D2 is topologically equivalent to D3 restricted to M2.

(iv) D3 is a metric for A/,UA/2.

(v) If point ? is in Pn and y is in M2\Pn+x for some w>0, there is a D3

between point u of t and v such that £>(/?, u) = n+ J and Z5,, contains no £>3

between point of u and d.

(vi) £>3 is complete.

For (i) let xinPn,y in Mx, and ?;>0 be given. If x is in Mx, then x itself

may be taken for z since D3(x,y)=Dx(x,y). Therefore, with the as-

sumption that x is not in Mx, the proof of (i) is given by induction on n.

If x is in PX\MX, then by the definition of D\(x, y) there is a point z on the

Px boundary of MxnPx such that Dl3(x,y)+1¡>Dl(x, z) + Dx(z,y)7>

D2(x, z) + Dx(z, y). Proceeding inductively, assume that (ii) holds for n=k

and arbitrary ?/>0, and let x e Pk+x\(Mx<JPk) with ?;>0. From the

definition of D3+1(x,y) there is a point z on the Pk+X boundary of

(MxyjPk)nPk+x such that

(1)    Dl+1(x, y) + n\2 > Dk+1(x, z') + Dk3(z', y) > D2(x, z') + Dk(z', y).

If z is in MxnPk+x, then z' is on the Pk+X boundary of MxnPk+x, and since

D3(z',y)=Dx(z',y), inequality (1) shows that z=z satisfies (i). If however

z is not in Mx, then z is in Pk. Thus by the induction hypothesis for the

points z and y, there is a point z on the Pk boundary of Mx nPk, hence on
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the Pk+X boundary of MxnPk+1, such that

Dk3(z', y) + riß > D2(z', z) + Dx(z, y).

Upon combining this inequality with (1) and the triangle inequality, we

arrive at the desired inequality in x, y, and z, completing the induction.

Assertion (ii) can be proved by double induction by using (i) as the

initialization k=Q and an argument similar to the proof of (i) to complete

the induction.

To prove for (iii) that D2 and D3 give the same topology on M2, first

let D3(x; e) be given with x a point of M2. Since by [7] the set D2(x; e) is

compact, it lies inP„ for some n. But since D3(x; e)r\M2 is D2 open, there

is some £ = <5>0 such that D2(x; ô)<=D3(x; e)r\M2. Since D2(x; ô)<=Pn,

then D2(x; <5) = £>£(*; <5)c £>3(x; e).

Now let D2(x; e) be an arbitrary D2 ball, and first suppose that x is in

MXC\M2. Then there is some £/2^<5>0 such that Dx(x;b)C\M2^

D2(x; £¡2)riMx. For any point y of D3(x; ô)riM2, there is by (i) some

point z in MXC\M2 such that d">D2(y, z) + Dx(z, x). Since z is thus in

Dx(x; 6) C\M2, then D2(x, z)<e/2 and the triangle inequality shows that y

is in D2(x; e). Hence in this case, D3(x; ô)nM2<=D2(x; e). If instead x is in

M2\MX, there is some e/2^ia>0 such that the compact set D2(x; p) is in

M2\MX and in some F„, so that D2(x; p) = D2(x; p). Since D2 and D3 are

equivalent on Pn, there is some p^.v>0 for which D3(x; F)nA/2<=

D2(x; p). Since any point y of D3(x; v)nM2 lies in Pn+k for some &=1,

by (ii) there is a point z of (MxL)Pn)riPn+k satisfying v>D2(y, z) +

D3(z, x). Thus z lies in D3(x; v)C\M2 and hence in D2(x; p), so that as

above the triangle inequality places y in D2(x; e). Therefore D3(x; v)C\

M2<^D2(x; e), and (iii) is established.

Since Mx and by (iii) also M2 are subspaces of (MX\JM2, D3), statement

(iv) follows from (2.2) as we note, using (i), that MX\M2 and M2\MX are

separated sets in (MxkjM2, D3).

If (v) were false, there would exist sequences of points {rj and {w,-},

satisfying ttePn and D3(p, uA=n + \, such that lim Z)3(/¿, uA=Ç>. But

since P„ and {x:D3(p,x)=n+\) are disjoint compact sets, this is im-

possible.

To show for (vi) that D3 is complete, let {x^} be a D3 Cauchy sequence.

It may be assumed that {xjj lies entirely in M2\MX and has no subsequence

that lies entirely in one of the sets Pn. In fact, if xk lies in Pn\\Pni-X for each

k, it may be assumed that nk+1 <nk+x. Suppose that for only a finite set

(here assumed empty) of indices k the points xk and xk+1 have a D3

between point in Mx. Then, for each k, (v) shows that there is some Z)3

between point u of xk and xk+x such that D(p, u)=nk+i and P contains

no Z>3 between point of« and xk+x. Since xk+x lies outside Pn+x, there is a
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D3 between point u of w and xk+x satisfying D(p, v)=nk+1, and moreover

P„ contains no D3 between point of u and v. Therefore, u and v can have

no D3 between point in Mx\JPn . Because of this fact and the construction

of the metrics D3k+1 and D2, it follows that D3(xk, xk+x)^.D3(u, v) =

D3»+1(u, v)^D2t+1(u, v) = D2(u, e)2tl. and {xk} cannot be D3 Cauchy.

Hence, there must be a subsequence {xk.} of {xk} for which the points

xk. and xk+x have a D3 between pointyt in Mx. Then {y{} is a Dx Cauchy

sequence that converges to some point ^ in Mx, and it follows that {xk} also

converges to y. Therefore, D3 is complete.

Corollary 4.4 If a closed subspace Mx of a locally connected generalized

continuum M2 has a complete convex metric Dx, then Dx can be extended to

a complete convex metric for M2.

The above corollary is analogous to Bing's classic extension theorem for

arbitrary metric spaces [3]. The following theorem now follows easily

from (2.4), (3.1), and (4.3).

Theorem 4.5. Let Mx and M2 be locally connected generalized continua.

In order for MXKJM2 to be a locally connected generalized continuum and for

every complete convex metric for Mx to extend to a complete convex metric

for MXUM~2, it is necessary and sufficient that MxnM2 be a nonempty sub-

space of both Mx and M2 which is closed in M2 and that the M2 boundary of

MxnM2 be closed in Mx.
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