ZERO SETS OF FUNCTIONS FROM NON-OUASI-ANALYTIC CLASSES

R. B. DARST

ABSTRACT. Any closed subset E of the real numbers R is the zero set of some C^{∞} -function f. One can also specify the order d(s)of the zero of f at each element s of the set S of isolated points of E. The present note improves this result by showing that each nonquasi-analytic class $C\{M_n\}$ contains such functions.

R. B. Hughes stated the foregoing interesting result in [1]. The purpose of this note is to present a short proof of Hughes' theorem based on properties of H. E. Bray's construction presented on pp. 79-84 of [2].

Suppose that $\{M_n\}_{n=1}^{\infty}$ is a sequence of positive numbers; set $\mu_1 = M_1^{-1}$ and $\mu_k = (M_{k-1}/M_k), k > 1$.

A C^{∞} -function ϕ on R belongs to the class $C\{M_n\}$ if there is a positive number A_{ϕ} such that $\|\phi\|_{\infty} \leq A_{\phi}$ and $\|\phi^{(k)}\|_{\infty} \leq A_{\phi}^{k} M_{k}$, $k \geq 1$.

The theory of C^{∞} -functions permits us to suppose, without loss of generality, that $\mu_k \ge \mu_{k+1}$, $k \ge 1$. Then the Denjoy-Carleman theorem [3, p. 376] tells us that the class $C\{M_n\}$ is a quasi-analytic class if, and only if, $\mu = \sum \mu_{\nu} < \infty$.

THEOREM. There is a function f in $C\{M_n\}$ such that $f(x)=0 \Leftrightarrow x \in E$ and furthermore, for every $s \in S$, the order of the zero of f at s is d(s).

PROOF. We begin with some preliminaries. First, we apply Bray's construction to the characteristic function of the interval $[-\mu, \mu]$ to obtain a function M in $C\{M_n\}$ with $A_N = 1$ and $M(x) > 0 \Leftrightarrow x \in (-2\mu, 2\mu)$. Next, we notice that it suffices to suppose that each component of the complement of E has length <1. Then we observe that translating and stretching M yields a function g in $C\{M_n\}$ with $A_n = 1/2$, g(x) = 0 if $x \le 0$, and g strictly increasing (even convex if you wish) on (say) [0, 3]. For a < b < a+1, set h(a, b, t) = g(t-a)g(b-t), $t \in R$. Then [3, pp. 373-374] $h(a, b, t) > 0 \Leftrightarrow t \in (a, b)$ and $A_{h(a, b, t)} = 1$. Now we are ready to begin construction of the requisite function f. The first step is to let $\{(a_i, b_i)\}$ be an enumeration of the components of R-E and set $h(t) = \sum_i p_i h(a_i, b_i, t)$,

Received by the editors October 16, 1972 and, in revised form, January 8, 1973. AMS (MOS) subject classifications (1970). Primary 26A93, 54C50.

Key words and phrases. C^{∞} -functions, non-quasi-analytic classes, zero sets.

544 R. B. DARST

where the p_i 's have absolute value one. Then $h(t) = 0 \Leftrightarrow t \in E$. Moreover, integrating that (k+2)nd derivative on (a_i, b_i) permits us to assert that there are constants P_k such that $|h^{(k)}(t)| \le P_k |(t-a_i)^2(b_i-t)^2|$, $t \in (a_i, b_i)$, $k=1, 2, \cdots$. Hence, $h^{(1)} \equiv 0$ on E; and if we suppose that $h^{(k)}(t)=0$ for all $t \in E$, then it follows that $h^{(k+1)} \equiv 0$ on E. Thus $h \in C\{M_n\}$ and $A_k = 1$. If $S = \emptyset$, we are done; otherwise, the second step is to adjust the order of zero at the isolated points of E. To this end we recall that if $s \in S$, the two components, (a_i, s) and (s, b_i) , of R-E abut at s. Then we denote by (α_s, β_s) the segment of length $\frac{1}{2} \min\{s-a_i, b_i-s\}$ centered at s. Next we notice that since $n\mu_n \rightarrow 0$, there is a constant $Q_s > 0$ such that the function, g_s , defined by $g_s(t) = Q_s(t-s)^{d(s)}h(\alpha_s, \beta_s, t)$ has order d(s) at s, is zero on a neighborhood of $E - \{s\}$ and belongs to $C\{M_n\}$ with $A_n = 1$. Set y(t) = $\sum_{s} q_{s} g_{s}(t)$, where $|q_{s}| = 1$. One final adjustment is necessary; it remains to specify the p_i 's and q_s 's so that f=h+y is nonzero on R-E as follows. Enumerate S. Set $q_{s_1} = 1$. Specify q at abuting points of S so that y is either nonnegative or nonpositive on each (a_i, b_i) . Iterate this procedure as far as possible. Either q is defined on all of S or there is a first s, not specified. Then set $q_{s_i} = 1$ and repeat the process. In this way, all the q_s 's are specified. Set $p_i = -1$ if y is negative at some point of (a_i, b_i) and $p_i = 1$ otherwise.

REFERENCES

- 1. R. B. Hughes, Zero sets of functions from non-quasi-analytic classes, Proc. Amer. Math. Soc. 27 (1971), 539-542.
- 2. S. Mandelbrojt, Analytic functions and classes of infinitely differentiable functions, Rice Inst. Pamphlet 29, no. 1 (1942). MR 3, 292.
- 3. W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966. MR 35 #1420.

DEPARTMENT OF MATHEMATICS, COLORADO STATE UNIVERSITY, FORT COLLINS, COLORADO 80521