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ADMISSIBLE  EXPONENTIAL  REPRESENTATIONS

AND  TOPOLOGICAL  INDICES FOR  FUNCTIONS

OF  BOUNDED  VARIATION

F.   M.   WRIGHT   AND   J.   N.   LING

Abstract. In this paper we first prove a theorem concerning the

composition r¡ of an analytic complex-valued function^ in a region

of the complex plane with a continuous complex-valued function

$ of bounded variation on the closed interval [a, b] of the real axis.

We then relate this theorem to admissible exponential represen-

tations and topological indices introduced by Whyburn in his book

Topological analysis. We also show how this theorem can be used to

prove a result of interest in the study of the argument principle.

Moreover, we look at the situation where <f> is a complex-valued

function of bounded variation but not necessarily continuous on a

closed interval [a, b] of the real axis,/? is a complex number not in

the range of <j>, and « is a complex-valued function on [a, 6] such

that e"'" = [(t>(t)— p] for t in [a, b\. We present conditions for u to be

of bounded variation on [a, b\.

1. Introduction. In §2, we show that the composition r¡ of an analytic

complex-valued function g in a region S of the complex plane with a con-

tinuous complex-valued function <f> of bounded variation on a closed inter-

val [a, b] of the real axis is of bounded variation on [a, b]. We show

further that J* v(t) dr¡(t) = j¡^ v(t)g'(<f>(t)) d<f>(t) for any continuous complex-

valued function v on [a, b]. In §3, we use the result of §2 to give a proof

(patterned after that in [1, p. 56]) to show that if (/> is a continuous com-

plex-valued function of bounded variation on a closed interval [a, b] of

the real axis, p is a complex number not in the range of </>, and m is a con-

tinuous complex-valued function on [a, b] such that

(1.1) e"U) = <f>(t) - p,       ts[a,b],

then u is of bounded variation on [a, b]. Whyburn [1] calls (1.1) an ad-

missible exponential representation of [</>(t)—p] on [a, b], and he calls the
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complex number

(1.2) p(</>,a,b,p) = u(b)-u(a)

the topological index of the ordered pair (<j>, [a, b]) with respect to p. We

also use the result of §2 to establish the integral formula

(1.3) p.(<f,,a,b,p) = ¡b[<Kt)-p]-1d<Kt)
Ja

for the topological index (1.2). It then follows from a result in [2] or [3]

that when (oj, [c, d]) is any member of the oriented Fréchet curve for the

complex plane containing the ordered pair (<f>, [a, b]), then p(co, c, d, p) =

p(<f>, a, b,p). The preceding result generalizes (1.5) of [1, p. 59] for <f> of

bounded variation on [a, b]. In §4, we show how the result of §2 can be

used to prove a result which relates to the argument principle.

In §3, we also look at the situation where <p is a complex-valued function

of bounded variation but not necessarily continuous on a closed interval

[a, b] of the real axis, p is a complex number not in the range of <p, and u

is a complex-valued function on [a, b] such that (1.1) holds. We suppose

that there is a positive real number M such that \<p(t)—p\^.M for all / in

[a, b]. We suppose further that we have a positive real number s and a

partition A of [a, b] such that |im u(t") — im u(t')\^e whenever?', t" are

on one of the closed subintervals of [a, b] determined by A. We use a

simple and direct proof to show that u is of bounded variation on [a, b].

We observe that the condition here on the imaginary part of u(t) holds

when u is continuous on [a, b]. Therefore, the result here, which is

Theorem 3.3, generalizes the first result of §3 mentioned above, which is

Theorem 3.1. The proof we give of Theorem 3.3 provides an alternate

approach to the one used in proving Theorem 3.1 via Theorem 2.1 and the

Whyburn technique.

2. A theorem for functions of bounded variation. In this section, we

establish the following theorem which we relate later to the study of ad-

missible exponential representations, topological indices, and the argument

principle.

Theorem 2.1. Let g be an analytic complex-valued function in an open

subset S of the complex plane. Let <f>be a continuous complex-valued function

of bounded variation on a closed interval [a, b] of the real axis such that the

range of <f> is in S. Let r¡(t)=g(<f>(t)) for all t in [a, b]. Then, r¡ is of bounded

variation on [a, b]. Moreover, if v is a continuous complex-valued function

on [a, b], then j>(,) dr,(t)= tf v(t)g'(4>(t)) d<j>(t).

Proof. For each z in S, let g(z) = re g(z) and g(z) = img(z). For each

t in [a, b], let f(t) = re <p(t) and <¡>(t) = im (pit), and let i7(r) = re r¡(t) and
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*/(/) = im r¡(t). Let T be the closure of a bounded and open set such that T

is a subset of 5 and such that the range of <f> is in the interior of T. Let M be

a positive real number such that |g,(z)|5=AZ", \g2(z)\^M for all z in T. Let

y be a positive real number such that for every / in [a, b], the y-neighbor-

hood of <j>(t) is in T. Let ó be a positive real number such that \<f>(t") —

(f>(t')\<y for every t', t" in [a, b] satisfying \t" — t'\<ô.

Let t', t" be points of [a, b] satisfying \t"—t'\<ê. Let z'=x' + iy' and

z"=x" + iy" be (/>(t') and 4>(t"), respectively, in rectangular form. Then,

rj(t")-fj(t') = g(z")-g(z')

= gx((l - 6)z' + 6z")(x" - x') + g2((l - 6)z + Oz")(y" - y')

for some real number 6 satisfying 0<6< 1. It follows that

\V(1") - ñ(0\ ^ M{\<p(t") - «01 + \$(t") - #f)|}.

From this it follows that fj is of bounded variation on [a, b]. Similarly, f¡

is of bounded variation on [a, b]. Thus, r¡ is of bounded variation on [a, b].

Let A = {a=t0<tx<t2<- ■ -<tn = b} be any partition of [a, b] with

norm less than ô. For each integer j — 0, 1, 2, ■ • ■ , n, let zj = xj + iyj be

the complex number (f>(tj) in rectangular form. For each integer j=l, 2,

■ ■ ■ ,n, let dj be a real number satisfying 0<ö;< 1 such that

ñ(t,) - ñ(t}_x)

= gt((l - 0á)2í_j + 0¡zA(xj - xj_x) + g2((l - $f)z^ + 0,zMy, - >Vi)-

We may use the boundedness of v(t) on [a, b], the uniform continuity of

gx and g2 on T, and the continuity and rectifiability of <f> on [a, b] to show

that
n

lim   2 "CAO - 9i)2i-i + OjZj)(xj - Xj_x)
||A||-»Oi=l

It then follows that

i HO dfj(t)
Ja

Similarly,

Cv(t) d>i(t)
Ja

+ g2((l - ei)zJ_1 + BjZjXy, - yj_x)]

= f WiW» «*fcO + f
Ja Ja

(¿(r)) 4(0 +   v(t)g2(4>(t)) 4(f).

■ f "(OliWO) 4(0 - f K0&(#0) 4(0-
Ja Ja

= f K0&W0) 4(0 + fWiWO) 4(0-
Ja Ja



434 F.   M.   WRIGHT   AND   J.   N.   LING [October

Therefore,

Cv(t) dn(t) = Í"vit)g'i4>it)) d<pit).
Ja Ja

This completes the proof of Theorem 2.1.

3. Topological indices. First we show how Theorem 2.1 can be used to

prove the following result concerning the admissible exponential rep-

resentation (1.1) when the function <f> is continuous and of bounded

variation on [a, b]. The proof we give is patterned after that given by

Whyburn [1, p. 56].

Theorem 3.1. Let q\be a continuous complex-valued function of bounded

variation on a closed interval [a, b] of the real axis. Let p be a complex

number not in the range of <p. Let u bé a continuous complex-valued function

on [a, b] such that (1.1) holds. Then, u is of bounded variation on [a, b].

Proof. Consider first the case where there is a ray L in the complex

plane emanating from p such that L contains no points in the range of </>.

Let S be the region consisting of all complex numbers z not on L. There is

an analytic complex-valued function g in S such that eq{z) = (z—p) for all z

in 5. Let r¡(t)=g(<p(t)) for all t in [a, b]. It is apparent that r¡ is continuous

on [a, b], and we have from Theorem 2.1 that r¡ is also of bounded

variation on [a, b]. It is clear that e',u) = <p(t)—p for all t in [a, b].

Next we drop the restriction about the ray L. Proceeding as in the proof

of (1.2) on p. 56 of [1], we have that there is a continuous complex-valued

function r¡ of bounded variation on [a, b] such that ev{t) =<f>(t)—p for all

/ in [a, b].

There is a constant k such that u(t) = r)(t)+k for all t in [a, b]. Thus, u is

also of bounded variation on [a, b].

This completes the proof of Theorem 3.1.

Next we show how Theorem 2.1 can be used to prove the following

result which provides an integral formula for the topological index (1.2)

when the function <p is continuous and of bounded variation on [a, b].

Theorem 3.2. Let <pbe a continuous complex-valued function of bounded

variation on a closed interval [a, b] of the real axis. Let p be a complex

number not in the range of<f>. Then, p(<f>, a, b, p) = J'* [<f>(t)—p]~l d<p(t).

Proof. Let « be a continuous complex-valued function of bounded

variation on [a, b] such that (1.1) holds. Then,

f [«¿(0 - PT1 d<p(t) = f e-uU) d[e"u) + p] = f e-"u)euU)du(t)
Ja Ja Ja

in view of Theorem 2.1. The desired result then follows.

This completes the proof of Theorem 3.2.
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The next result concerns the formula (1.1) when <f> is a complex-valued

function of bounded variation on the closed interval [a, b] of the real axis

such that <p is not necessarily continuous on [a, b]. This result provides

conditions for u to be of bounded variation on [a, b] and extends Theorem

3.1. We give a simple, direct proof of Theorem 3.3 different from the proof

above for Theorem 3.1.

Theorem 3.3. Let </> be a complex-valued function of bounded variation

on a closed interval [a, b] of the real axis. Let p be a complex number not in

the range of4>. Let u be a complex-valued function on [a, b] such that (1.1)

holds. Suppose there is a positive real number M such that \<p(t)—pX^.M for

all t in [a, b]. Suppose we have a positive real number s less than -n\2 and a

partition A of [a, b] such that |im u(t")~im u(t')\^e whenever t', t" are on

a closed subinterval of [a, b] determined by A. Then, u is of bounded variation

on [a, b].

Proof. For each r in [a, b], for simplicity of notation let u)(t) = <p(t)—p,

let c7)(t) — re w(t) and cj(i) = im (o(t), and let «(r) = re u(t) and û(t) = im u(t).

We now show that ù is of bounded variation on [a, b]. For each t in

[a, b], ii(t) is the principal logarithm, Ln|ro(/)|, of the positive real number

|a>(r)|. Let t' and t" be any two real numbers in [a, b]. We note that

\u(t") - u(t')\ = \Ln\o>(t")\ - Lnh(F)|| = |£-*{MOI - \o>(t')\\\

for some £ on the segment of the real axis joining |«w(f')l and |w(i")|. Thus,

lain - a(t')\ ̂  M-i\\<f>(n -p\ - m')-p\\< a/-1 \<p(t") - <p(t')\.

From this it follows that « is of bounded variation on [a, b].

Next we consider the more tricky task of showing that the function û is of

bounded variation on [a, b]. Let p be a real number satisfying e<p<

£(e-f-7r/2). For each t in [a, b], u(t) is an argument of the nonzero complex

number o>(t). For each t in [a, b] such that —7r/2<w(i)<7r/2, we have that

rait)l\ioU)\

u(t)= (i - s2rmds.

For each / in [a, b] such that 0<w(i')<7r,

¡;7,U)/\a>U)\

û{t) = --\ (I - s2)-1'2 ds.
2     Jo

For each t in [a, b] such that 7r/2<¿(?)<37r/2,

û(t) = 77- (1 - s2yU2ds.

We may obtain analogous expressions for û(t) for all / in [a, b].
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Let t', t" be real numbers on one of the closed subintervals of [a, b]

determined by the partition A. Let z'=x' + iy' and z"=x" + iy" denote

(o(t') and w(t"), respectively, in rectangular form. In case [—tt/2 + p]^

û(t')^[Tr/2-p],then [—n¡2 + (P-E)]<íú(t")<:[TT¡2-(p-e)], so it follows

that

\û(t") - «(0|

Í
»"/|*"|

(1
h'/lM'l

^ csc(p — s)

= csc(p — e'

■ s2r1/2 ds

y"      y'
csc(p — e)

\y" \z'\ - y' \z"\

\(y" - /) \z'\ + y'[\z'\ - \z"\

^ csc(p — s) -

[\z'\ \z"\]

[\y" - y'\ + \z" - z'\
^ csc(/o — e)

2|z"

M

In case û(t')^ [ir/2 — p] and û(t")^ [Tr/2 — p], then u(t')< [Tr/2 — (p — e)], and

"('")= [T/2 — p] — E^[—7Tl2 + (p — e)] since p<tt/2, and so we have as in

the preceding case that \û(t") — û(t')\^csc(p—e)2\z"—z'\/M. In case

[■7r/2-p]^û(t')^[7T-p] and û(t")> [tr/2-p], then û(t")^[-n—(p-e)],

M(f') = (p —e) and w('") = (p~e) since [tt/2 —p]^.(p — s) in view of the

restriction that p^%(e+tt/2), and

\û(t") - Û(t')\ =
X"/|2-'|¡•x t\z

}x l\z

(1 -s2rV2ds

^ csc(p — e)
2 \z" -

< csc(p — e)-~ M

as in the first case considered. We may continue thus to show that

\û(t") - «(Ol ^ csc(p - e)2M-î \4>(t") - </>(t')\.

Thus, û is of bounded variation on [a, b]. Hence, u is of bounded variation

on [a, b].

This completes the proof of Theorem 3.3.

4. A result relative to the argument principle. Here we show how

Theorem 2.1, together with Theorem 3.2, can be used to prove a result of

interest in the study of the argument principle. Let g be an analytic com-

plex-valued function in a region S of the complex plane. Let <f> be a con-

tinuous complex-valued function of bounded variation on a closed interval

[a, b] of the real axis such that the range of <^> is in S. Let p be a complex
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number not in the range of <f>. Let C be the oriented Fréchet curve for the

complex plane containing (</>, [a, b]). Let r¡(t)=g(<f>(t)) for all t in [a, b].

Clearly r¡ is continuous on [a, b], and r¡ is of bounded variation on [a, b] in

view of Theorem 2.1. Clearly/) is not in the range of r¡. Let z' = <f>(a) and

z" = <p(b). Making use of a result in [2] or [3], we let

f g'(z)[g(z) - p]-1 dz = Pg'(<A(0)[g(¿(0) - P]-1 d<pit)
Je Ja

- f W) - P]-1 drjit)

by Theorem 2.1. We have from Theorem 3.2 that

I   Wß) - P]"1 dtjit) = pir¡, a, b, p).
¿a

Then, it follows that

g'(z)[g(z) - p]"1 dz = {Ln |g(z") - p\ - Ln |g(z') - p\}1
+ i {change in a continuous argument of [g(z)—p]

as z traverses the path determined by C}.
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