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SUBALGEBRAS OF B[c]

H.   I.   BROWN   AND  TAE-GEUN   CHO1

Abstract. Two classes of subalgebras of the bounded operators

on the Banach space of convergent sequences are studied. One

class contains the well-known algebra of conservative matrices and

the other contains the algebra of almost matrices. It is shown that

the nontrivial members within each class are isomorphic to each

other.

We denote the Banach spaces of convergent and bounded complex

sequences by c and m, respectively, and the Banach algebra of bounded

linear operators on c (with the usual uniform norm) by B[c]. With lim

denoting the functional lim x = lim? x¿ on c and with e and ek denoting,

respectively, the sequences (1, 1, 1, ■ • • ) and (0, • • • , 0, 1, 0, • • • ), where

1 appears in the kth coordinate and zeros elsewhere, k= 1, 2, • • • , we have

the important functionals % and %i on B[c] defined by (see [6, p. 241])

X(T)=lim(Te)-2klim(Tek) and WO-(?*\-Z* (Fe% /=1,2, •••.
(All sequence subscripts, as well as all indices of summation, run from 1

to CO.)

As usual we identify c** (the second dual space of c) with m. Then

F**, the second adjoint of an operator F in B[c], is a mapping from m

to m and has the following matrix representation:

7-* * __

~X(T) bx b2

XiiT) bix bv.

7AT)    bn    b¡;

¿13

¿>23
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where bnk = (Tek)n and bk=lim(Tek). For further discussion of this repre-

sentation and some of the remarks that follow, see, for example, [3] (and

[1]). For each Fin B[c] we have the unique representation F=i;ig>lim-|-/i,

where B is the matrix (bnk), v is the bounded sequence (%,(F)), and y®lim

denotes the one-dimensional operator from c to m which sends x to

(lim x)v.  Let

Q = \te B[c]:l\m Xi(T) exists}

and let

r = {Te B[c]:Xi(T) = 0 for each /}.

Then O and T are proper subalgebras of B[c] with £í=>F. V is the well-

known algebra of conservative matrices and % is a scalar homomorphism

on T. Those members Fin Y for which /(F)=0 are called conull and the

algebra of conull matrices is denoted by *P. These and other subalgebras

of B[c] were studied in [1]. It was shown there that % is the only nonzero

scalar homomorphism on F, that Q. also supports only one nonzero scalar

homomorphism denoted by p and defined by p(T) = -/(B), and that XV,

p1 (the kernel of p), F, and Cl are the only proper subalgebras of B[c]

that contain Y ( = p±rlT).

More recently, A. Wilansky [5] introduced the following two classes of

subalgebras of B[c]. (Our notation differs slightly from his so as to agree

with the notation in [1].) Let c denote the canonical embedding of c in

c**. (c is identified with the set of sequences converging to their first term.

See, for example, [7, p. 102].) Given any w in c** (=m) let

F„, = {Te B[c]: T**w = Xw for some scalar X}

and let

Ll„. = {TeB[c]:T**wew ®c},

where by w®X (w a vector and X a linear space) we mean the linear span

{Xw+x:x e X and X a scalar}. Clearly, r,„ is contained in QM. If w $ c,

then for Teùw (resp., TeT„), T**w = Xw+x (resp., T**w = Xw) thus

defining a functional p„ on Q,t. (resp., on Tw) by pw(T) = X. It is proved in

[5, p. 356] that Q,„ is a closed subalgebra of B[c] containing the compact

operators, that Tw is a closed subalgebra of Qu„ and that pw is a scalar

homorphism on Q„, and on ru, for w $ c. It is also shown that Llw = il,

rw=r, and pw = p when w = eK

In this paper we study these subalgebras in more detail. For example,

we show that when w $ c, Qœ (resp., r„) is either Í1 (resp., V) or is

algebraically isomorphic with Q (resp., F). It follows from this that all of

the relationships between B[c], O, p ' , and F proved in [1] equally apply

to B[c], £!„., p,l, and r   We also show that f] {Tw:w e m} = {XI: X a scalar}
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and that f\ {£iw:w e m} = l®K, where / denotes the identity operator in

B[c] and K denotes the set of all compact operators in B[c].

We begin by listing some useful facts.

1. Lemma, (a) c may be identified with the set of sequences converging to

their first term.

(b) c=x(Bc for any convergent sequence x which does not converge to its

first term.

(c) Ifz $ w®c then (w(Bc)C\(z@c) = c.

Proof.   These statements are well known. Part (a), for example, is done

in [7, p. 102].i , v        1

2. Lemma,   (a) Ifw $ c and z e (w®ê)\c then C1Z=QW.

(b) Ifz=Xw with X^O then rz=rw.

Proof. In part (a) we have z=Xw+x with X^O and x e c. If Te Qz

then T**z = PziT)z+y with y e c, and so F**w=(l/A)F**(z-x) =

il¡X)ÍpziT)z+y—T**x) e w®c. Hence, £¿Z<=Í2M. The reverse containment

is proved similarly, as is part (b).

3. Lemma,   (a) w e c if and only if£la = B[c].

(b) Ifwee then YW^T.

Proof. The first half of (a) follows from the fact that c is invariant

under every F**. To prove the second half assume w $ c. Then either w

converges with lim wj&w1 (Lemma 1(a)), or w is divergent. In the first

caselety = (—1, 0, — 1, 0, • • • ) and define B=ibnk) by setting b2n^x2n_x=l

(«=1, 2, • • • ) and bnk=0 otherwise. Then T=v®lim + B belongs to B[c]

and F**h>=(0, w2 — wx, 0, w4 — w\, 0, ■ ■ ■ ) $ c. Since c = w(Bc (Lemma

1(b)), F does not belong to £iw. In the second case choose a subsequence

(wMn)) °f w (with &(1)>1) which converges to some number different

from Mj, and let T=(tnk) be the subsequence selecting matrix defined by

setting /„.i_i=l when k=k(n) (n=l,2, ■ • ■ ) and 0 otherwise. Then

Te B[c] and T**w=(wx, wkix), wk{2), ■ ■ ■ ) e c\c and so T**w does not

belong to w©<?. Hence we again have that T $ Ow.

To prove (b) simply observe that if w is the zero sequence then ru,=

B[c]jíT, while if w^0 then w'<g>lim belongs to rw but does not belong to

T, where w' = (w2, w3, wx, • • • ).

The next lemma is Lemma 1.1 of [1]. We repeat it here for easy reference.

4. Lemma. Let v andx be bounded sequences with v divergent. Then there

exists a conull multiplicative matrix B such that Bv—x.

(A matrix B in V is conull and multiplicative if %(B)=%i(B) =

lim(Be¡) = 0 for each i=l, 2, • • •.)
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5. Theorem.    Let w $ c. Then Í1Z = L1W if and only if z e (wdc)\c.

Proof. The second half of the theorem is Lemma 2(a). To prove the

first half assume that z $ (w(Bc)\c. If z belongs to c use Lemma 3(a) to

conclude that Llz=B[c]¿¿Qw. If z $ c then z must have a cluster point p

different from zx. By considering z—pe, if necessary, we assume that

zxj¿C) and that z has a subsequence (zkin)) (with Ar(l)>l) which converges

to 0. (Notice that ify=z— pe then 0B = Oz by Lemma 2(a).) Now consider

the corresponding subsequence (wkln)) of w. It either converges or it

diverges. In the latter case we may choose a subsequence (m(n)) of (k(n))

so that (wmin)) converges. The subsequence (zm{n)) still converges to zero.

Thus, without loss of generality we may assume that (wk(n)) converges.

Moreover, by adding a constant sequence to w (and using Lemma

2(a)) we may also assume that (wkhl)) converges to zero.

Let T=(tnk) be the subsequence selecting matrix rB,Ä_i=l if k=k(n)

(n=l, 2, • ■ • ); let v be the bounded sequence (1, wk(x), 1, H'i(i), ' ••};

define B=(bnk) by b2n_Xi2n_x= — 1 (n=l,2, •••); and set S—v&\m+B.

Then

S**(T**w) = wx(0, 1, wHl), 1, wk(2), • • - ) - (0, wHX), 0, wm), • • ■ )

and

S**(T**z) = z,(0, l,wk(x), l,wH2), ■ ■ ■ ) - (0, zk{1), 0, z,(3), • • • )•

Now use Lemma 4 to get a conull multiplicative matrix R such that Rv =

(w2 — wx, w3—wx, n>4 — M'1; ■ • • )• Then (RST)**w = wxw — w\e — R**y and

(RST)**z=zxw — zxwxe— R**x, where v = (0, wux), 0, wm), ■ • ■ ) E c and

x = (0, zm), 0, zm), ■ ■ -)ec. Thus both (RST)**w and (RST)**z belong

to w(Bc. Since z^O, (RST)**z does not belong to c and so it cannot be-

long to z£D<? (by Lemma 1(c)). Thus, ÜW5¿£2Z.

As an immediate consequence of Theorem 5, Lemma 1(b), and the fact

that £2 = r>pi [5, Theorem 5] we get the following corollary.

6. Corollary.   Q2 = £î if and only if z e c\c.

In order to set up the algebra isomorphism from B[c] onto B[c] men-

tioned in the introduction we need to know that for each w $ c we can

produce an isomorphism in B[c] whose second adjoint sends w to el. We

do this in two steps. First, we produce an isomorphism whose second

adjoint sends w to some x in c\c (Lemma 7). Then we produce another

isomorphism whose second adjoint sends x to e1 (Lemma 8). Our con-

struction in Lemma 7 is patterned after the one in [2, Lemma 1].

7. Lemma. Let w $c. Then there exists an isomorphism T in B[c] such

that T**wec\c.
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Proof. Since w is not in c we may choose a convergent subsequence

(wk(n)) °f w (with rV(l)>l) so that wk{n)^wx for each n and lim„ wk(n) =

l^wx. Let B=(bnk) be defined as follows.

Set bnn= 1 for every n.

If n=kii)+j<kii+l)— 1 for some z'=l,2, 3, • • ■ , and some y'=

0, 1, 2, • • • , set &„,w<)-i*=(w#+1-/)/(Wi-wiM<)).

Let bnk=0 for all other choices of« and k. Next define v as follows.

Set f„ = 0for l^n<Ár(l)andfor«=/c(i')-l, »=2,3,4,

If n=k(i)+j<k(i+l)—l for some /=1, 2, 3, • • • , and somey'=0, 1,

2, •■ -, set vn = (l-wn+x)l(wx-wk(i)).

Now let T=v<gilim + B. By computing F** it is easily verified that the

matrix obtained from F** by multiplying each of its nondiagonal elements

by —1 is the two sided inverse of F** and is the second adjoint of the

operator — v®lim + (2I— B). Thus T** is an isomorphism from m onto m

and hence Fis an isomorphism in B[c]. It remains only to compute T**w.

Let tt denote the number of terms in the sequence vr between wkU) and

«WD-Then T**w=(wx, ■ ■■ , wmh /,•••,/, wki2), /,•••,/, wH3), /,-■■),

where f¿ /'s appear between wk(j) and wkU+u. Since lim¿ wkU) = l and l^wx,

T**w clearly belongs to c\c.

8. Lemma. Let x e c\c. Then there exists an isomorphism T in B[c] such

that T**x=e\

Proof. Suppose first that xx j¿0. Since x e c\c, lim x exists and does not

equal x,. Let /=x, —limx. Let v = (—lj(lx1))(x2,x3,xi,---) and let

B = (bnk) be the diagonal matrix bnn=l\l, «=1,2,3, •••_. Then T—

vQlim + B is the isomorphism. Indeed, a simple computation shows that

T**x=e1 and that T~1=u^lim + A, where w = (x2, x3, x4, • ■ • ) and

A = iank) is the diagonal matrix ann=l, n=l, 2, ■ ■ ■ .

Next suppose that x,=0. Then lim x = /V0. Let ac>1 be the first sub-

script such that xk¿¿0. Let F=i'®lim-|-Ä, where v=(\/l)ek~1 and B=(bnk)

is the matrix defined by

bnn = -1// for n ^ k,

b,u.-i = xn+1l(lxk)    for n ^ k,    and

bnn =1 for n = 1, 2, • ■ • , k — 2.

(If k = 2 ignore the last step.) Then T**x = el and F is an isomorphism

with inverse T~l=u®\\m + A, where un_1=xn for each n^.k and where

ann — —1      for n ~i k,

a„-fc_, = xK+1    for n ^ A- — l,    and

flM = l for n — 1, 2, • • ■ , k — 2.

(Again, ignore the last step if k — 2.)
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9. Theorem. Let w $ c. Then there exists an isomorphism T in B[c] such

that T**w = e\

Proof. Simply combine the two isomorphisms gotten in Lemmas 7

and 8.

Recall that pi = {Te Clw: pw(T) = 0}. pi is clearly a subalgebra of Í2„,.

10. Theorem. Let w$c. Then there exists an algebra isomorphism <f>

from B[c] onto B[c] such that,

(a) QK = <¿(Q),

(b) pi = (p(pA), and
rc\   p   = ¿(D

Proof. Let F be an isomorphism in B[c] whose second adjoint sends w

to e1. Define </>:B[c]-+B[c] by </>(S)=T-lST. It is easily verified that </> is

an algebra isomorphism from B[c] onto B[c] with inverse<f>~l(S)=TST~l.

It remains only to verify the three assertions. We do this for (a); the

proofs for (b) and (c) are similar. Let Seiî = Cïei. Then S**e1=Xe1 + x

with x e c. Thus (<f>(S))**w=(T-1ST)**w = (T~1S)**e1 = T-1**(Xel+x) =

Xw+ T-1*** e wQ)c and so <£(£!) c Ow. On the other hand, if S e Qw then

S**w=pw+y for some y E c, and so (</>-l(S))**el = (TST~l)**el =

(TS)**w=T**(pw+y)=pe1+T**y e el@c. Thus, Qwc^(Q).

Let K denote the set of compact operators in B[c].

11. Corollary,    f] {£iw:w e m}=I®K.

Proof. If w e c then Q.w = B[c] (Lemma 3(a)) and so f) {Qw:w e m] =

f) {0,w:w $ c}. For each w $ c we have Qi(, = f/>(Í2), where <f> is the algebra

isomorphism constructed in Theorem 10. But 0 = /®pI and so iiw=

<f>(Q) = I®(f>(p1) = I(ftpi. Hence, f] {Cîn.:w e m} = l® f] {p¿ : w e m). Stocc
each pi contains K [5, Theorem 3] the proof will be complete when we

show that f] pi<^K. Thus let T=v®lim + B e f) pi- (Notice that nee

and that B e T because Te p L <=£i.) Then T**w g c for every bounded

sequence w. This means that B is conull and sums every bounded sequence

and hence must be compact by Schur's theorem. (See [4, p. 17].) Since

D®lim is also compact it follows that Te K.

12. Theorem,    f] {Tu,:w Em) = {XI:X a scalar}.

Proof. Let Fe C\TW. Then, in particular, Te F and so %(T) = p(T),

Xi(T) = 0 (/=1,2, •••) and T=(tak) with column limits tk (k=l, 2, • ■ • )•

Let w e c\c, say w=pe1+x with p^O and x e c. By computing T**w

and equating it to pm(T)w we get the following set of equations:

2 {kXk+i = 0    and    ^ '«An = PaX^H+i        (/i = 1, 2, ■ • • )•
* k
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Since p is the only scalar homomorphism on Q ( = iî„,) [1], pw=ap for some

scalar a. But the proof of Lemma 2(a) shows that a must be 1. Hence,

pw=p on Q and the latter of the equations becomes

2 {nkXk+i = p(T)xn+x       (n= 1, 2, • • • ).

In particular, taking x=ek (k = 2, 3, 4, • ■ • ) we get tnk=0 for nj^k and

tnn = p(T). Thus T=p(T)I and so |"| Fw is contained in the set {X1:X a

scalar}. Since the reverse containment is obvious, the proof of the theorem

is complete.

Our next result improves [5, Theorem 4].

13. Theorem.    Tz= r if and only ifz=pe1 with p^O.

Proof. The second half of this theorem is contained in the statement of

Lemma 2(b). To prove the first half, assume that Zyápe1 for any p¿¿0.

Then z,#0 for some /> 1. Either this is the only nonzero entry in z, or else

Zjy^O for somey different from i. In the first case, let T=(tnk) be the matrix

with /„.¿_i=l for n=l, 2, 3, • • • , and zeros elsewhere. Then T**z =

z^yáXz for any X; hence, F belongs to Y but not to Tz. In the second case,

take T=(tnk) to be the matrix with tt_Xhi_x=l and zeros elsewhere. Then

T**z=ziei9£Xz for any X and so we again have Fin T but not in Tz.
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