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LOCAL AUTOMORPHISMS  ARE DIFFERENTIAL
OPERATORS   ON  SOME  BANACH  SPACES

JOHN   C.   WELLS   AND   CHARLES   R.   Df.PRIMA1

Abstract. If E belongs to a certain category of Banach spaces

(the S°°-smooth spaces) which include Hubert spaces and if F is any

normed space, it is proved that any local linear automorphism of

C^iE, F) is a differential operator. This generalizes a result of

J. Peetre when £=/?" and F=R.

1. A result of J. Peetre ([2], [3]) is the following characterization of

linear partial differential operators:

A linear map T of C*(R", R) into C*(R", R) is a linear "partial

differential operator" if and only if T is local i.e. for each/e Cco(Rn, R),

support(7/) c= support (/).

It should be noted that by a linear partial differential operator T is

meant a collection {AAczCx(Rn, R) such that the sets

Ga = {xE R" | Aa(x) * 0)

from a locally finite collection and such that T(f)(x)=^x AI(x)Dct(f)(x)

for each xe R" and each /e CX(R", R). Here a = (a,, . . . , a„) is a

multi-index, |a| = 2*-i a> an^

D* = d^/dxl1 ■ ■ ■ dxl".

In this paper we prove that at least for £ in a certain category of

Banach spaces this theorem extends to local (linear) automorphisms on

CX(E, F) where CX(E, F) now denotes the infinitely Frechet differentiable

/"-valued functions on E and F is any normed linear space. Defining

Lk(E, F) to be the bounded symmetric ^-multilinear maps from £ to F we

have Dkf(x) e Lks(E, F) for each x.

A natural generalization of a finite dimensional differential operator to
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an arbitrary Banach space is

T(f)(x) = 2*i(x)(Dif(x))
! = 0

where <x, e CX(E, L(Lk(E, F), F)) and the supports of the a¿ form a locally

finite collection. Such maps are clearly local linear automorphisms on

C    (£-, T ).

As in Wells [6] we let

B\E, F) = \f\fe Ck(E, F), sup \\Dkf(x) - Dfr/(y)||/||x - y\\ < oo)

and
OO

B°°(F, F) = Pi B*(£, F).
t=o

An isomorphic invariant of a Banach space due to Bonic and Frampton

[1] is Cv smoothness. E is C smooth, p=0, 1, 2, • • • , oo, if there is some

r\ e CV(E, R) with 7/(0)^0 and r\({x\ ||jc|| = 1})=0. Similarly, as in [6], E

will be called Bp smooth, y'=0, 1, 2, . . . , oo, if there is an r/ e BP(E, R)

with r](0)y¿0 and r¡({x\ \\x\\ ^1})=0. B°° smooth spaces have been called

uniformly C°° smooth in Quinn [4]. Finite dimensional spaces as well as

„S?p for p an even integer are Bx smooth. I1 is not C1 smooth. ca is C°°

smooth but not /31 smooth. Separable Cv or Bv smooth Banach spaces

admit partitions of unity of class C or Bp respectively. In these cases

C(E, F) or Bp(E, F) is dense in C°(E, F) or B°(E, F) respectively for any

,0-space F. Refer to Bonic and Frampton [1], Wells ([5] and [6]) for more

details.

2. Theorem. If E and F are Banach space, if E is B™ smooth and if

T:Cca(E, F)^CK(E, F) is a local linear map, then T is a differential

operator in the sense described above.

The proof will require three lemmas. Only the first will use the B°°

smoothness of E. We will use Kr(x) to denote the open ball of radius r

centered at x.

Lemma 1. Let x0 e E. There is a neighborhood UXt¡ of x0 and an integer

k with that property that iff, geC'x'(E, F), y e Ux¡¡ and Dif(y)=Dig(y)

for O^i^k then Tif)iy)=Tig)iy).

Proof. If this were not the case there would be an xa e E, a sequence

xn tending to x0 and a sequence/„ e C°°(£, F) with Dkfnixn)=0 for k^n

and \\Tif„)ix„)\\=n. By the fl" smoothness there exists an r¡ e Ä°°(F, R)

with /i(cl(A:1/2(0)))=l and »i({;c| ||jc||^1}) = 0. Let A; = supx ||ZFrK*)ll- For
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m\

each n there is an Mn and an rn such that \\D>fn(x)\\^Mn(\\x—xn\\)n+1~'

for x e KTi[xr) and 0</^n. Whenever l/an<rn we have

sup || D¡(fn(x)r¡(an(x - xn)))\\

sup     IID-y^ll-^-supllD^x))!!
xsKi/a„(x„) x

Thus we can choose a sequence an so that

(0 ¡lan<rn,

(ii) K1/«XOnK>MmOO=0    for/i^m,

(iii) mpjä„iiceE §Ds(fn(x}ri(an(x-x„)M<dkt(x0, Kx/an(x„)).

It follows that the function f(x)=^=xf„(x)r¡(an(x—x„)) belongs to

C°°(£, F) and that/(x)=/„(x) for x e A:1/2an(x„). Consequently

||F(/)(x„)|| =n

so that F(/) is not a continuous function at x0. This is a contradiction.

Let Ek = F®Lls(E, F)®- ■ -®Lk(E, F). By Lemma 1 for each x e UXa

there is a linear map 7^: Ek-^-F such that

7-(/)(x) = Tx(f(x), Df(x), ■■■, D*f(x)).

In Lemmas 2 and 3, x„ and ¿A,, will be fixed.

Lemma 2.    Fx is bounded except possibly at a set IXo of isolated points

ofUXo.

Proof. If this were not the case there would exist a sequence {xn}

with {x„} c Ux and a y e Ux with _y = lim xn and with TL unbounded for

each n. Next we choose a collection {yjcfi*(£, /?) with support q>nC\

support (fm—0 for n^m, dist(x0, support (pn)>0 for all n, and </>„(x) =

1 near x„. (We observe that the Bx smoothness of E is not needed to

construct the {q>„} since the x„'s can be separated by a disjoint collection

of weak neighborhoods each of which is the support of a S°° function

equal to 1 near x„.) For each n choose g„ e CCC(E, F) such that

sup      || £>J(gn(x)7>H(x))|| < dist(x0, support <pn)

and \\TXn({gn(xri), • • • , Z>'g„(x„)})||^«. The function

oo

/(*)  =   2 grXx)<P„(x)
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belongs to C°°(F, F) andf(x)=g„ix) near xn. Consequently || F(/)(jc„)|| ;>«

which is impossible in view of the continuity of the function F(/).

Thus  Tx induces a map  T°:UXo\Ix¡)-^LiEk, F) such that T°ix)=Tx.

Hence T°{x)(f(x), • • • , B*f(x))=Tif)(x) for x e U^IV

Lemma 3.    For eachp=0, 1, 2, • ■ • and each y^ e U   there is a neighbor-

hood Uyo ofy0 such that T°\UVo\Ix¡i e BpiUVa\Ix<t, LiEk, F)).

Proof.    In Wells [6] it is shown that

B\E, F) = \f\fe C\E, F), sup II A^V(x)||/||/i |
X,h*0

»+1
<   »

where Ahfix)=fix+h)—fix). Suppose the lemma were false. Then for

some p and some y0 e UXo and for every neighborhood N of y0 contained

in x0, the supremum of ||A£+1/(;t)[|/||/i||,H-1 over all x, MO with x,

x4-h, ■ • ■ , x+ip+l)h contained in N\IX would be infinite. This would

imply the existence of sequences {x„}, {hn} with xn->-y0, hn—>-0,

and
{xn, x„ + hn, • • • , xn + (p + l)hn} e UXo\IXo

lT°ixri) ii/, ||j,+i > 4»_

Choose A„ e Ek with H/O*. <3~" and

\\A^lT\xn)iAn)\\ ̂  § HA^fVJII • 3"*.

Since for any /, s in a normed linear space sup{||r-f-o-j|| |<r=±l}^lkll, we

may inductively choose o„— ± 1, n= 1, 2, 3, • • • , so that

A*+1F°(xi)(¿Mj) > | ||A^F"(xn)|| • 3-.

For each« let gn be the k polynomial such that An = {gnixn), ■ ■ ■, Dkgnixn)}

and/(x) be the k polynomial 2Sa ajgAx). Then

l|A^lT(/)(3c„)|| = W^nXnYfixJ, ■■■, Dkfixn))\\

^ |a^fvj(2m;)|| - |AL+inxj(2ff^,)|

^ IIA^F^xJH • (|3- -  J 3-J)
\ j=n+l        '

= |3-" • \\Al^T\xn)\\ ^ KW • \\hj»+1.

But this is a contradiction since, for every p, T(J) is Bv in some neighbor-

hood of jv    Q.E.D.
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We are now in a position to prove the theorem. First observe that the

choice of/j = 0 in Lemma 3 implies that the exceptional set Ix¡¡ of Lemma 2

is void. Hence F° is defined on all of Ux¡¡ and by Lemma 3 is locally Bv for

any p so that T° e Cx(UXo, L(Ek, F)). Consequently there exist ** e

C°(UXa, L(Lns(E, F), F)), n=0, I, ■ • : ,k, such that

k

T(f)(x) = 2 <{D-f(x))
71 = 0

for all x e UXo. Suppose that T(f)(x)=2lL0 <x'n(Dnf(x)) for x e UXi with

«.'„ e C™(UX¡, L(L"(E, F), F)). Without loss of generality we may assume

k = k'. If xe UXoDUXi and A e Lns(E, F) for if^k, then for g(x)=(l/n\)

A(x, x, ■ • • , x) we find a°n(A)=T(g)(x) = x'n(A). Hence on Ux CMJX ,

<x° and a'n agree, so that we may define maps

a„ e C"(E, L(L:(E, F), F)),        n=0, 1, ■ ■ ■ ,

such that (Tf)(x) = ^=0a.n(x)(Dnf(x)) for xeE and the {«„} have

locally finite supports. Consequently F is a differential operator.
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